PRIVATE PAPER
EARLY DRAFT
not for publication

Ten coples have been made of this paper to show to particular
people, for two purposes: first, to explain a scope of organized interests
Which I have been unable to present to anyone orally or in mazee
pisceneal writings, and second, in hope of oriticism and suggestions
that will take into account the relationship of particula

I am acutely aware that this is only a sketch, an/outiline for *hal, abluy

$$
\begin{aligned}
& \text { aveploely havy iv is TiA in if feu }
\end{aligned}
$$

> stedy anaresoarch I hope it can bee seen from the drift of the whole thing, however, why I have proceeded in thrs way, attempting ta gaxixnm certain general formulations belone mific.
I hope it will not be inferred from the present form ${ }_{\mathrm{F}}$ that I have any intention of publishing it soon or as it stands. I have sought, rather, to unite several trends of my interests in a clear way y_{z} mamiondurition
 I intend this as a way of resting these general concerns for awhile in the clearest form I can manage.

I regret that in previous papers my $\mathbf{~ c h o i c e ~ o f ~ l a n g u a g e ~ h a s ~}$

> been a problem for readers-- on the one hand mawily
6. The for containing" jargon.
for contalning jargon, I have tried to avoid both a practices here.

$$
\begin{aligned}
& 1 \\
& \text { I have ander to arte Hepmer } \\
& \text { as latess as pouble and faver }
\end{aligned}
$$

on deciscoh rootems and homis
caniag is Pe fulve, ix which

2 It has been especially difficult to avoid ur using special terms, elther terms of my own or technical kemas from eshez fields. I hope the reader

Will bear with me to the extent I have not been able to mandion
avoid this.

it ull in te remed fros
If Hote, HiN fresenn traen ! of thu nuesemor of te
motornal that have ane infeaton of posterang it 1
 have soupre, gian to while

HOPE H'Ll BE CLEATR The is commetted empirical.
1

I inteng this as a way at resting fieses concerny for geveral
awhile in the clearest fork I che manage.

TARGON VS HFAS

: Sorry that ra previous papers
in thes series this hes seemed a conform. For verrous reasens a lot of teeh. Vora, i dre thous is from varias focke. This
I's ouly beause they are exumplos they are''
osed precisply.ter 70
I WILL TRETNTIFT TECH. LG. WAICH IS NOONTV.

A Federation of intercefs for those well-wishers

It may be that in a descriptive network certain"pure types" are taken for their ease of statement, and other types are allowed as modifications of these pure types. The most obvious example is "rationality" in social sciences. "Rationality" is often used as a paradigmatic concept-as by the classical economists, Weber, Parsons, and the game theorists-
to describe w the pure version of what people would do if they had certain excellent abilities of calculation and considerable freedom of movement in various situations, Then, within their theories, a large part of the difference between "rational" behavior and what people actually do oan be attributed to 1 rrational and non-rational factors, such as memotion, inertia, $x \pi$ and inflexibility.

It may often be found that the measuring schematic which was originally set in a network of clear outalde predications-- for instance, a scale which has been developed in reference to some particular group of objectsloses this clarity of outside predication when axeme applied to a new universe of objects-- new objects \mathbf{x} may be in some sense "off the scale, either by soing off an end of the scale to a realm in which the old outside predications are no longer relevant-- a simple examplests are the *mandern physical laws relating te the expansion of metals or the contraction of gases to temperatures- or be in some new way unrelated to the old meanings of the scale, asxxhen -- for example, when when aero-cars come into use, the old motorcar registrations that count "number of wheels as a criterion of maizaxaxtaxing will be inappropriate to the new vehicies which do not even touch the ground, let alone ride on wheels.

Pes, roughly, as beling dimensions, discrete entities, ad weightings
the constituent parts owever, on examining/a

undubwomeneme

Ana

the term "unconscious" in a system of depth psychology-- is it a dimension, or a discrete half of a dimension, or a discrete entity? It will wn
and in fact the way the system evolves max as many s psychoanalysts use it may change it irom ane ther another.

There are a number of They vary in precision and extent or implication We may distinguiguch sumbing For instance, in a crystan "mass" in physics-- exist implications, this very well valiso implies, within
 force that would be necessary to push it, if there were no fiotion
The term "probability" is interestingly complicated.
\qquad with the context; it is made in different sistuations vary a theory's being true in prability or Fant calculated probabilities that one refers to the precisely roulette wheel.

Ewradgron well-made

Measuring networks are our next topic. We asserted in the first chapter that the signifid precision dependent on thescriptive network was ummany
to the terms involved.
It is the same for measuring schematics sind $_{x}$ and networks
some array or dimension By a measuring mowmorimatic some array or dimension that is used to mawnik/we mean
 $\hat{2}$
a number of different alternativenBut Just as with the coincidence of n ates

$$
\because
$$

 21 predictions without
sone cases it may pe poss tic
4

$-832 x^{2035}$

$$
25,6
$$

In this chapter we will xxexal offer what we think is a preferable
alternative to the axiomatic modnil programme of scientific investigation.
We will treat induction and theory validation as a cyclical process, which -
takes place inxawhymatromatis by empirical checking and schematic changes
in the model.
As $\mathbf{t z}$ will be recalled, we have introduced the concept of "Induction" as the problem of finding stable schematics in some collection of phenomena, containing many manifest properties and relations, internal and external.

The stable schematics, derix we hope, will derive precision and significance from thetr outside predications which ginewning stablilize and make precise their meaning. Eventually, it is hoped, these networks will reach a high state of presisismoxim specification and crystallization with regard to as many other theory-systems as possible.

We will divide the problem into a number of stages.

19,1

First, the problem of notiaing and assimilating. In its preliminary
stages this is a mrobrau matter of noticing that there is a domain, and as noticing possible
puntimizav ways of segmenting and otherwise schematizing the doaain

These are hunches, problems of "notion schematics" as discussed earlier,
and only of passing interest to us here

The later stages axe of noticing and assimilating maxiver demand finding catggories, dimensions, entities and general "codings" which seem to take into account the significant phenomena to be described. In this it is necessary
things, distinctions, etc.
to throw into relief those/dindiondime which seem to be significant
summearching for cutting-points, category-boundaries and so on
The visibility of ak what seems significant must be increased; altantion

One of continued
the phenomena which do not fit into the code, in such a way that they may
be later uinminty re-considered for possible modifications of the model.

Unfortunately several considerations militate against this. One is
purely economic,
for axsm gathering data that seems irrelevant--x scarcely a "reasonable activity, in light of the first construal, and yet obviously reasonable

[^0]whition fathering of data not glanted the original
plan of research. The cemberk is Are truer the witits witc. thinghs outside of the axy focal research concerns
athe code back toward the focal categories.

L Basically thmawnertiont the effort to collect side materials, not apparently of direct relevance, is a matter of the actual configurations of the subjectmatter. For in some cases this material will be expensive and unrelated to the first activity, in others virtually identicalify and concomitant.

N Nhen
which makes it mochharder to see the foafures wow disflictions that ought to he woticele for improve wr of the model. I very connacums and clar sole will assimilate couater examples to itsel.

These problems of noticing axE may be regarded as axe one aspect of the

problem of computability, $\begin{gathered}\text { mwimerger } \\ \text { or assimiliation, What data may be }\end{gathered}$
successfully examined by the builder of the theory have clear
import for the generality, and clarity and suitable emphasis of the theor
that results. If there is ou overloud, ite ine caporeify of Tly ty

The problem of the evolving theory is themwe that which confronts any evolving thought-system. A thought-system, as we remember, is some network of schematic connections which can evarager by and large, only by discrete
 are not easy, and depend largely on the kinds of information that have entered through the noticing-system.

Fecublich Therele π Ince 1 .

21,1

We come now to the Exiz crux of the foregoing arguments about procedure. That is the fifth step, theory improvement and correction.

It is stated as self-evident by the axiomatic theorists x_{x} that th an axiomatic model can be corrected and improved in a simple fashion, by ascertaining which of the fundamental propositions are false and need replacement. This failss to recognize the things that mappawnember can have gone wrong throughout the referential network, and assumes that E In the canonical form which the theory has happened to assume the difficulties one or may be localized to/a few axioms.

That this is not so should be clear from unsp reviewing the different steps through which the theory has gone in its development. Certain thingsitya were noticedian attempt was made to array them code them and construct cabilin and Natural categories and divisions may have been missed; schematics of
a model./ In crystallizing his model the theorist may have arbitrarily a model./ In crys may have arbitrarily derided
 definitions may have been unsuitable,

The impravement of the theory, then, must dap proceed through all means which seem reasonable and appropriate to the subject-matter; that 13 , the theorist mequmwe should not fail to consider any schematic changes in his model which will increase its apparent probabllity of better fit. To expect that the axiomatic method will localize the problemes incorrectness of a theory thenib

 asking expecting that he can make it into a map of New York,

The problem of tites human life and deacl is ondy one of the frontiors on which the categories are degenerating. fabortion. in
fossirle AMERTAICE OF DOCTRINE \& STBLE DH-MITH

The avalabilaty of pla simele costrics

Defearses
15OLATIONS
Witherantes SE TSE OF FUTINTY
(s)
tont INEIV L-GEP RENX

Can actuty th the yoo over?

 5

Another example is, of course, the the rmonuclear bomb. Whememememas *
Efinh ind $+2$
for the young-- has been discussed sufficiently elsewhere. A Therme

WHETVETS
SENTE CH MHELENCC
Hopt

OF LHE STGES
Whe LudACIES OF GYLANCE sual rateratoce of syptan
ROLEL ARTICHATION?
*THE TRULY TREE PIScICTY

$\operatorname{inc}_{\rightarrow-i} \operatorname{sen}+\frac{x}{4}$ oे
NLA FGC RULIFESL
Thenctury it arat

 fo the = ant. $=$

Ir Cheata motos. at avalaulities
(-7)
AT1 1
thro Thay a avalude tit mo melt the nayk
(1) Iufvidual amoy thers. Actk-15x SIGHALLINE \& FATE CONTROL

Ses, love
Papsoncan interchenge peradig an SUT DO NHINGS WOPK OVT A ho say? FAR TOO MANY COMPLCATRONS
II. Intivatual \& stvaytor
(IPR) ; Systens for Living
Por progrominngs \& reactive strudfore
situtionac) (situAtianal)
URERESANB/NG SITUATMN EXC.
COMPUTIVG \& DECISION PROBLEMS
Harches
AXXUETIES

$$
\text { If } \operatorname{lo}
$$ SAME SDOR

i. 64 oir or $\mathrm{H}=\mathrm{o}$ valec

 $4 y^{64} x$ ald WIAT LMMTHOLS EXIT$$
4
$$

+4

Su-buado resy kounter

$$
(2 \operatorname{mpn}(1+41)
$$

(5y panit - (4 (1045)

$$
(E M O-68 L)
$$


```
vik: 4-4,
```

$\cdot 3$

$$
n^{2}
$$

CDHS

The Cong \& Dang of the them en Sol:

Whole personalities and memory-sets could be storedr for membead
loading and re-loading a human mechan1sm? What about the actual repair
of brain damage, the connection of-wehinery to the nervous system?

Behima hesides the philosophical questimsothere are the more

drastic questions ab of both cost and allocation. If these developments and programining
in neurology/should follow the trends we bave mentioned in medical
sciencer, the costs will be and within the reach $/$ /Wnwatemempe only of public
authority. To whom will these personality-restorations be allocated,
and in what situations? of course, breakthroughs in kerik computer
technology-- say, biotic digital computers requiring infinitesimal
power and space-- might make pormpensibive the existence possible of
warehouses of 1 mp bottles, filled with regenerations of the minds

ypsimaw The purpose or possible uses of it are unclear. Yet, zakk as with解
the mass-production of the prayer wheel, the use of computers to th of and the banning of contracept
write out the manifold names of God, there are institutions and persons might
that fayor the production of artificial or simulated consolousness
to the limit of capacity, ximex

must emphasize again the incredible importance of the distribution
of decision, if these issues themselves are of any importance. There
have been many times and situations when wrwamd important decisions
whe were made in the clear aight of an approving public-- peace or wari,
the National Recovery Act. The changes of the kinds of things that
are happeniog and available make that less and less aiwawnmipmimany
1ikely model of what will happen with decisions involving both
technicalities and humanity,

10,1

We would like to emphasize the ioterlockingness of systems decisions
(a times that cosin.
N11 become necessary to counteract such things as the in cease of
carbon dioxide, the siting of lakes, the ends of and contamination of unstable bacteria, water pollutions Yet numbers of these problems are closely intern similarly for city planning stem dectedons will have among that market structure.
yet we shark are all too aware of the ease of delay in system decisions io degenerating situations, par example, England kept putting
 had it been adopted early a great many costs could have been saved but the rising cost at each the change was considered Similarly io this country for developmental work on deferral to the existing emphasis on automobiles, in an ascending spital of possible costs.
increase of the extent of interlock among systems, and the With the increase of

F interlock carries with it certain temptations, and increase of int instance the design of systems that woman
price can be put to unexpected private use

Other new generalities of systems unite minat things that had bee to machine now widely interchangeable from system to system and machine,

the storage of photographs. But along with these generalities we may also
expect the corrauption of a number of universals-- accounting systems,
dimensions of measurements- on which we formerly arrayed these things.

```
\\The ease of transformation by/mechanical means may well matmate
    make the
    make less unified/systems of array and ordering tmxtke presented to people
    without the equipment. Daylight saving time is one such transformation,
                    #
We may well expect \({ }_{\star}\) that, as with the different speeds of phonograph records and the different types of radio receiver, more and more things will be unavallable to people without the proper equipement.
>
```

Technology has also made possible certain kinds of drastic new distio-
guishabilities-in-proximity. It is no longer necessary to be prepared and
keyed-up towdemak to commit action A to suddenly do it-- for instance, war.

Garbage can be wrapped in polythglene near lovely things; messages, files,

complete inattention to them-- things which are nearby but do not seem to be,

```
awmmat a generality and option-- new and different ranges of possible
```

alternatives have been made possible.
 strategy there can be no atsi simple distinction between warn and peace; thermonuclear threat and monement arms-con indivisibly tools in the same game/

Q Not only with weapons systems, but with all forms of familitiles, a generalization of abilityes has come about that permits a tremendously wide option as in their

wema minuturnay While strategic considerations greatly restrict the
possible use of these weapons systems, they are like other facilities subject
to the widest possible consideration of vast ranges of alternatives.

$$
r
$$

Foods and meat packing are anearer example. At an earlier time, what
nonwnuwd things were axx possible were contingent on natural forms. There
were standard cuts of beef and porkæ, and, as residual categories, sx hamburger
and sausage; there were the known/fs contrast, much of what is consumed are some sort of uniform mash, made to
a consistency and shape that will be appealing. Bixw Baloney and "sliced cheese"
are mainly milk solids obained in a centrifuge; "fish sticks" and "chopettes
 are artificially formed of formerly unusable a fragments.
with its layers and fractions of chocolates, syryps and orunchy elements,
is an extrame case of total fabrication, knd; The vevent impending advent
of prepared celludose for bulling is another such development.
And, symbolically, we see the vast success of the n foodless food, Metrecal,
totally constituted of basic olls, ane sugars and residues. However, Metrecal
is merely the most explicit development along these lines, and by no means
the first.

$$
\begin{aligned}
& \text { ECONOMC PROBLEM } \\
& \text { egra copter \% }
\end{aligned}
$$

Here recuntrants

that vasily nermen atio

[^0]: $K>$ Aagler
 .
 or schematic, a coding-language may be applied where its appropriacy $x=$
 is more attenuated than the user realizes. Thus categories chosen for

