X"2% (15%x+9*Y) *3

SIN(3*X) "2 (X+Y) * (5%X-Z) (5*X+4Y/3) “2*x
TAN(X) *SIN(PI/2-X) ASIN(X)/dX J(B*X+5%Y+13) “4dX (23* (X+Y) “2434) "2
55%(X"4-1)/(X"3~1) (15*X-9)"4 00S(X) "3*SIN(X) °5 4*SIN(PL/24X~Y) +2
(X"242%%+1) / (X"2-1) TAN (X) 1/X+(X43)/ (X+1)45*x [S55*TAN(X) /CSC (X) dX
SIN(Y) ax~3/ax 55.375 (X*3)"2 COS(PI) 304547 dy"3/dx
967+48 QoS (Y) Jx“e6dx SEC (X) -(X+Y) CSC(X) X+X/12
COT (X) 21%%X+9 X+35%% X*X/45 58%X/X SIN(2)
1242/3 YEX*Y*X J22ax 512/54 X*3+14 X"2-53
dTAN(~X) *SEC (=X) /dX 32*Y+X SIN(X) CoSs(X) 56+4/3
1243/ (X-5/ (X+2/X)) X+Y453 X-X+45 X*Y+453 TAN(1)
(X+13) * (5-X) * (X+3) 214375 33%x"5 338-99 Z+Z*45
8/X+7/X"2-3/%+12 CoT(X) (-X)"2 - (X*Y) SEC (X) 674763
ATN(1) 10G(4) ax"6/ax Q0S (-X) (X+2Z) ~2 X* (X48)
124673 X+45%Y d(COT(X) *CSC (X)) /AX (X+3%7) "2+ (X43*Y) “4
EXP(2) S*SIN(X+Y) QC0S (X+Y) -005 (X-Y) d(95*SEC(X) “2) /dX
a9*x/ax (X+Z-13) "2 X*(X+Y) * (X-3*Y) °3 (X"3-3*X"24X48) "2
X*Y4HX*X 3*C0S(X-Y) SIN(X) *COT(X) X/ (14X) 4X4X"2
SQR(9) X+34/X dz/ax Jorcor()*csCcX)ax (v+2) “2 X/ (X45)
Y+18%7 132*95 CSC(-X) SOR((X"2+1) "2)*X/4 X+X+Y+Z X¥XAY*Z
SIN(PT) X/X 245 4*X"345 SIN(X) “24008(-X) "2 123+443 X/ (X43)
00S (-PI) (X+18*Z) SIN(-8*X) (124X4X"24X"3)"2-X 10G(9) 3.1415
G422 4/X"2-1/X XHXM/X"4 X4X ((X)) 123 x+X/13 Y4Y*33
TAN(X) “2-1 23/ (X+3/X) SEC(X) ~ (-2) 4*5%66 5+2/34 ZHX+15
15%SEC(2%X) “2*SIN(X) "2 14X4X"24X"3 X+Y+43 COT(X/2) -COT(X) X=X
=“X+2/X-1/ (X-1)+1/ (X+2) - SIN(X) 34+173 oor(X) X+X+Y-3*Y-+4*X-3*2+8
(X=13) * ((X+1) “2-1) “24X X“7/X X+X+2 224X *Y 00S (X+Y) ~SIN(X-Y) +2
(2*X+Y~2) “2* (X-3*Y+13) JX*z2dz TAN(X) X"5-18 (X+1) * (X+2) * (X43) *X
cos(Y) X+21 367890 J578x 278%*X dP1/axX 1/%+33 SEC (X)
Y+Z-42 PI Y/Y+30 (X-3) "3/ (3*(X+1)) SIN(Y) 33°2-5 X+33%7
242422 d33/ax SIN(X)*C0S(1/24X) Y*X/82 X+34+Y TAN(X)
aor) 357468 (((X+43)*X-2)*X+8)*X SQR(2) SIN(Y) Z+67%Z
(X+4) "5 (Y-5)"4 TAN(ATN(X-13)/(X-13) 4-(-X) SBC (-X) (9*Y) "4
24%43%Y (X/8) "5 X+Y+2*Z IOG(PI) X-33/X (4*X) "6 Y* (X42)
24P1/25 CSC(-X) X+32/X Y431*X X+Y459 (Z+9) "2 as*y/ax
X*Y*33 Y*Z4145 Y4+2*72/8 00S(13) Z4X*44 8¥X/223 X*X 37 X+2/X TAN(-X)
34 59, 87 35 +X 99 36 73 37*X 54 96 Y 55
TAN(X) 3*X+45 Z*Y*45 SPC(X) X+#X*21 [10G(4) TAN(X)"2 75 3456
12 45 12 74 12 12 45 12 13 53%x 12 6 12
57 56 2/(X+9) 12 6324536 38 46 3*XMX"5S 42 X/X YHY*Y Z*Y/Y48
84 18 X Y*Z 39 75 25 X 73
X*8 4%g 8-9 56-X 73 92 77 X-Y 64
Y433 48*X 4963 903284 52 97 1923 85
44 Y*Y 68 C0S(23) 33 44°5 27 63 &X"I/&X 13
66 Y 32 42 35 14 Y* d¥/a&X 47 74 TAN®X)

PICOMATH-80 Copyright Notice February 10, 1981

Copyright Notice

Copyright (c), February 1980 by The Soft Warehouse.
All Rights Reserved Worldwide. No part of this manual may be
reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any human or computer language, in
any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, except in accordance
with the Copying Policy section of this manual or by express
written permission of The Soft Warehouse, P.O. Box 11174,
Honolulu, Hawaii 96828, U.S.A.

Trademark Notice

PICOMATH is a trademark of The Soft Warehouse.

Disclaimer

The Soft Warehouse makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantibility or fitness for any particular purpose.
Further, The Soft Warehouse reserves the right to revise this
publication and to make changes from time to time in the
content hereof without obligation of The Soft Warehouse to
notify any person or organization of such revision or
changes.

PICOMATH-80 February 10, 1981

TABLE OF CONTENTS

Copyright Notice . . « ¢ ¢ ¢ ¢« v ¢ o o « o . i

Table of Contents . « ¢ ¢ ¢« ¢« ¢ ¢ o & « « o ii

1. Introduction . . . ¢ ¢ v ¢ ¢« 4 4 ¢ 4+ e« . 1-1
2. Usage

2.1 Using the Rational Program . . .

2.2 Using the Polynomial Program . .

2.3 Using the Trigonometric Program
2.4 Using the Fourier Program . . .

3. Copying PoliCy « « v ¢ & o o o s o s o o o =

4. How To Learn More About Computer Algebra
4.1 The Professional Societies 4-1
4.2 The Literature . . . « v « o o « o« « o« 4-1
4.3 Available Systems ¢ ¢ ¢ o . . 4=2
5-1

5. Computer Algebra in Education

6. How PICOMATH Works
6.1 The Polynomial Program . . . +» « « « « 6
6.2 The Trigonometric Program . . « . . . 6=
6.3 The Fourier Program . . « « « » « « « 6
6

6.4 The Rational Program . + « « o o o o &

7. Installation and Adaptation Guide

7.1 Precision .« ¢ o« o o ¢ o o o o o o o o 1-1
7.2 Assignments . ¢ ¢ ¢ ¢ 4 ¢ o o o o o o 12
7.3 Printed Messages and Remarks 7-2
7.4 Array Dimensions and Subscripts . . . 7-2
7.5 Exponentiation & 773
7.6 Multiple-statement Lines 7-3
7.7 Relational Operators . « « « ¢ « « « « 171-4
7.8 Logical Operators . . .« ¢ ¢ « o « o« o 1-4
7.9 Built-in Functions . . + ¢« ¢ o ¢« « « « 71-5
7.10 String Variables and Comparisons . . 7-6
7.11 Space Requirements « « « . . 7-6
7.12 Other Languages . « « « « « « « o « o 1-8
7.13 TestinNg « ¢ ¢ ¢ o« o o o ¢ o o« o« o« « « 719

8. Program Listings
8.1 Rational Program . . .
8.2 Polynomial Program . .
8.3 Trigonometric Program
8.4 Fourier Program . . .

. » . .
* e ¢ o
¢ s s e
* e * @
* o o &
e e & 0
¢ e & 0
¢« e e

Index L] » - . L] L] L] I-l

ii

PICOMATH-80 Introduction February 10, 1981

1. INTRODUCTION

PICOMATH-80 is a package consisting of four demonstration computer-
algebra programs originally written in BASIC:

1. The polynomial program can expand an expression such as
2x-y-x+y2-(28z-172
into the equivalent polynomial
2 x5 +3x%y - yS -784 22 +56 z - 1
2. The rational program can expand and simplify an expression such as

1 1 2x
P
x-1 x+l x2-1

into the equivalent ratio of two polynomials, reduced to lowest
terms
%+l

x-1

(Although the rational program also treats polynomials as a special
case, the polynomial program can accommodate more variables.
Moreover, the polynomial program permits higher degree on most
implementations, and the polynomial program is generally more
accurate when both programs are applicable.)

3. The trigonometric program can expand and simplify an expression such
as
1 + tan’x

1 + cot2x
into the equivalent standard form
sec?x - 1

(As a special case, alleged trigonometric identities may be proved
or disproved by expanding and simplifying the difference in their
two sides.)

4. The Fourier program performs trigonometric transformations that
complement those provided by the trigonometric progran.
Specifically, the Fourier program transforms polynomials in sines
and cosines of x and integer multiples thereof into a linear
combination of such sines and cosines -- ie. the reverse of
multiple-angle expansions. For example, the program transforms

PICOMATH-80 Introduction February 10, 1981

64 sin%x cos3x
into
3 cos x -3 cos(3 x) - cos(5 x) + cos(7 x)

All but the rational program can also symbolically differentiate
and integrate such expressions according to the rules of calculus.
However, a knowledge of trigonometry or calculus is unnecesssary for
utilizing the more elementary features of the PICOMATH package.

PICOMATH is small enough to run on virtuallly every computer, and
the original source code written in BASIC is easily adapted to other
languages besides BASIC.

Section 2 of this reference manual is a user's guide, elaborating
on the brief usage instructions printed by the programs. Section 3 is a
statement of the generous conditions under which copying of this
document and/or installing the package on an additional machine are
permitted. Section 4 is a brief guide for those who wish to learn more
about computer algebra in general. Section 5 is a discussion of the
potential uses of computer algebra in education. Section 6 is an expla-
nation of how PICOMATH works. Section 7 contains instructions for
installing and testing the generalized programs listed in Section 8.

Mere usage of an installed version of the programs requires at most
study of sections 1 and 2. Installation of the program requires the
additional use of sections 7 and 8. Section 6 can be explored by those
who are curious about how PICOMATH works and are experienced in program-—
ming together with numerical analysis.

PICOMATH-80 Using the Rational Program February 10, 1981

2. USAGE

The polynomial program presumes familiarity with the concepts of
adding, subtracting, multiplying and expanding integer powers of
polynomials. The rational program further presumes familiarity with the
concepts of placing rational expressions over a common denominator and
cancelling the greatest polynomial factor that evenly divides the
resulting numerator and denominator. The trigonometric and Fourier
programs further assume familiarity with radian measure, the relations
between the various trig functions, and the concept of exploiting var-
ious identities such as multiple-angle formulas to simplify trig
expressions. Usage of the differentiation and integration options of
the polynomial, trigonometric and Fourier programs further requires
familiarity with elementary calculus.

This reference manual also presumes familiarity with use of the
computer and terminal employed, together with the language in which
PICOMATH is implemented: Specifically, you are assumed to know how to
start the computer, load BASIC or whatever is used to implement
PICOMATH, then LOAD and RUN a saved program written in that language.
You are also required to know how to modify an assignment statement of
such a program.

Given an appropriate math background, the easiest way to learn to
use a PICOMATH program is to simply LOAD and RUN it, then follow the
displayed instructions. This section is merely an elaboration of those
brief instructions. This description applies to a typical interactive
BASIC implementation. Other environments may entail slight or not-so-
slight differences that we cannot predict. Such differences may be
described in a supplement attached to this manual, prepared by whoever
adapted PICOMATH to the environment.

2.1 Using the Rational Program

Typically, after loading the rational program you replace the
example line 20 with an analogous line that assigning to variable A an
expression that you want to simplify to a ratio of two polynomials in X,
reduced to lowest terms. For example:

20 A=1+ (X*X+1)"2 +X4+1) / (X°4-1)

(Note that the circumflex """, designating raising to a power, is desig-
nated by an upward pointing arrow or a pair of asterisks on some
systems.)

After replacing line 20, you enter the RUN command, causing the
program to display a simplified equivalent such as A =

2X72 + X

xX"2 -1

2-1

PICOMATH-80 Using the Rational Program February 10, 1981

Note that the multiplication asterisk is suppressed in output but must
not be omitted in line 20. Also, you must rename the one variable in
your problems as X if not already named that.

Note how the expansion process includes cancellation of the
polynomial greatest common divisor from the numerator and denominator so
that we do not get incompletely simplified results such as

2X "4 + XT3 + 2%X72 + X

X"4 -1

Moreover, results are usually normalized so that either the numerator or
denominator has a leading coefficient of 1.

Roundoff error in the underlying BASIC arithmetic may cause some of
the coefficients in the result to be inexact. For example, the above
result might display as

'2.00038 X T 2 + 0.999473 X - 6.35251E-4

X" 2 + 4.82352E~4 X - 1.00079

In an attempt to minimize such annoying distractions, the program
replaces relatively miniscule coefficients by zero, while replacing
nearly integer coefficients by the nearby integers. However, an exact
result could truly entail relatively small or nearly integer
coefficients, so the program imposes rather stringent thresholds before
making these adjustments. Thus, inexact coefficients may appear despite
the adjustment process.

If the degrees of the resulting numerator and denominator are
modest and if all coefficients in the unexpanded expression are integers
of small magnitude, then the presence of slight inexactness in the
corresponding expanded result is often obvious from inspection, in which
case the appropriate "nearby" exact result is also often opvious. (For
example, the above inexact result is obviously nearly (2x +x)/ (x2-1).)
In contrast, the sizes of roundoff errors in a result are usually not at
all obvious if the unexpanded expression contains noninteger
coefficients or if the result contains coefficients of large magnitude.
Consequently, to help identify problems for which roundoff errors have
yielded unacceptable accuracy, the program compares the unexpanded and
expanded formulas at some sample points, displaying a warning message if
any discrepancy at these samples is large relative to the largest sample
magnitude. Although extremely unlikely, these discrepancies all could
be relatively small even though other samples would have revealed
serious inaccuracy. Thus, always inspect results for reasonableness as
an extra precaution.

Whether or not such a warning message is printed, the program
finally breaks execution, returning control to the executive command
level after displaying an epilogue message instructing the user to
modify line 20 and rerun if desired. This message also announces bounds
on the maximum degrees of the resulting numerator and denominator that
the program is capable of accommodating. These degree bounds are

2-2

PICOMATH-80 Using the Rational Program February 10, 1981

typically slightly less than half the number of significant decimal
digits provided by the underlying BASIC arithmetic when applying the
exponentiation operator, """. This accuracy may be less than for the
other arithmetic operators =-- particularly in double precision,
especially if """ is evaluated using exponentials and logarithms even
for integer exponents. Moreover, even for results that fall within
these degree bounds, accuracy depends strongly upon whether or not the
given and resulting coefficients are integers of relatively small
magnitude and upon whether or not the zeros and poles of the expressions
are favorably distributed between the sample points. Consequently,
common 7-digit single-precision arithmetic permits only modest results
to be accurately determined and displayed. In contrast, the polynomial
program accommodates results having a numerator of degree 6 in X, and
the polynomial program is usually more accurate when applicable.

The accuracy of all four PICOMATH programs is more
dependent upon the simplicity of the exact result than upon
the simplicity of the given expression.

‘Limitations of the underlying arithmetic entail another hazard: To
determine the expanded form of the formula on line 20, PICOMATH
evaluates that unexpanded formula at several values of X, then
interpolates or fits a ratio of two polynomials to these samples.
Unfortunately, at a particular sample point the unexpanded expression or
one of its subexpressions may exceed the BASIC arithmetic magnitude
limit, thus causing overflow. This phenomenon is particularly likely if
a sample happens to fall near a point where a denominator becomes zero.
Depending upon the particular BASIC implementation, the resulting action
may be:

1. Display a warning message, use the correctly signed number having
the largest representable magnitude in place of the unrepresentable
intermediate result, then proceed.

2. Display a warning message, use some less appropriate number in place
of the unrepresentable result, then proceed.

3. Same as 1, except without a warning message.
4. Same as 2, except without a warning message.

5. Display an error message, then interrupt execution, returning
control to the command level.

In any event, you are unlikely to proceed to a sufficiently
accurate result to avoid the "serious discrepancy” warning message.

A related possibility is for a nonzero intermediate result to have
a magnitude too small to represent in the arithmetic, thus causing
underflow. Depending upon the BASIC implementation, the resulting
action may be:

1. Display a warning message, use zero in place of the unrepresentable
intermediate result, then proceed.

PICOMATH-80 Using the Rational Program February 10, 1981

2. Same as 1, except without a warning message.

3. Display an error message, then interrupt execution, returning
control to the command level.

Here too you are unlikely to proceed to a sufficiently accurate
result to avoid the "serious discrepancy" warning message. Moreover, if
an intermediate result is replaced by zero, a subsequent attempt to
divide by that intermediate result causes a zero-divide error.
Depending upon the BASIC implementation, the resulting action may be:

1. Display a warning message, use some arbitrary representable number
in place of the undefined intermediate result, then proceed.

2. Same as 1, except without a warning message.

3. Display an error messade, then interrupt execution, returning
control to the command level.

‘Here too, you are unlikely to proceed to a sufficiently accurate
result to avoid the "serious discrepancy" warning message. Moreover, a
zero—-divide error could arise directly from a sample coinciding with a
zero of a denominator, rather than indirectly via underflow. However,
this cause is quite unlikely because the program avoids trivial sample
values.

Overflow, underflow, or zerodivide can occur after the expanded
expression has been printed because sampling is used also to test for
serious discrepancy. However, this situation is less serious because at
least we then have an expanded result that was computed without
incurring these difficulties.

For all four PICOMATH preocgrams the expectation of overflow,
underflow, zerodivide and excessive roundoff error is diminished by
formulating the problem in a manner that employs only small-magnitude
integer coefficients and low degree as much as possible. For example:

1. Perhaps a trivial common denominator can be identified by inspection
and removed along with a common divisor of the resulting coefficients
before submitting the problem to PICOMATH.

2. Perhaps the problem only involves even powers of X, so that the
degree can be halved by merely replacing X"2 with X before submitting
the problem.

Simple substitutions often permit application of this program to
problems that are otherwise outside its domain. For example, replacing
c* by X transforms the expression

cF(cX+1)2 + % + 1

cix -1

into the one at the beginning of this subsection. The inverse
substitution on the simplified result then yields the expression

2-4

PICOMATH-80 Using the Rational Program February 10, 1981

The formula on line 20 can even entail irrational operations if the
formula is defined at all of the sample values and if the formula can be
simplified to a single rational expression interpolating those sample
values. For example:

20 A = EXP(LOG(X"6+3*X"4+3*X"2+1)) “(1/3) / TAN(ATN(X"2+1))

This possibility is of course of limited utility because most
expressions involving irrational operations are undefined over some
intervals for X or because the expressions do not simplify to a ratio of
polynomials even over a somewhat restricted interval for X.

Warning: Some implementations employ integer division
when both operands are of integer type, causing (1/3) to be
‘interpreted as zero in the above example. Experimentally
determine how your implementation behaves in this regard, and
if necessary be sure to make at least one operand of "/" be
floating point whenever that is intended.

Here are some examples that should work on any reasonable 7-digit
floating-point arithmetic, thus helping to test your implementation of
the rational program or reveal weaknesses in your built-in arithmetic:

-1 3+ x2+x+1
------ —
x3 -1 x2 +x +1 !
(x+1) + (x=2) * (x+3) 3 +2x%x2-5x%x-6
_...> ’
(2=1) * (x+2) * (x=3) x3-2x2-5%x+6
- x2 + 4 x + 24
1+x/ {2 -x/[34x/(4-%)1} —> '
x2 -8 x+ 24
3 - 13/x - 10/x2 3+ 2
._..> _______ v
1 - 2/x - 15/x%2 x + 3
4 x 3 x 2 1
- + —_— ——
(x+2) * (x~2) (x~2) * (x+1) (x+2) * (x+1) x +1
x2 -5%x-6 x2 -7 x + 10
x2 -2 x-15 X2 +5x + 4 X2 -2 x
__.> ________ ’
2 x =12 2x+8
x2 + 3 x

PICOMATH~80 Using the Rational Program February 10, 1981

1
I e
1
1+ —

x-1 2x -1
——————————— —> ———,
1 x + 1

1
] = —
x+1
3x+4
2 X = memeee———
X - 2 2x+3
e
10 x + 4 X -2
X = m————
2x+3

2.2 Using the Polynomial Program

Usage of the polynomial program is similar to the rational program,
except with the added option of requesting differentiation or integra-
tion. Typically, after loading the polynomial program you replace the
exanple line 20 with an analogous line assigning to variable A an
expression that you want to simplify to an expanded polynomial in X, Y
and Z, then perhaps also differentiate or integrate. For example,

20 A = (X+7Y) " 4

Then, you enter the BASIC RUN command, after which the program inter-
actively asks the user to enter E for Expansion, D for Differentiation
or I for Integration, as desired. After receiving a valid response to
this query, the program proceeds to determine then display the desired
result, such as respectively

A = X4 + 4X3Y + 6X2Y2 + 4XY3 + Y4
or
Av/dX = 4X°3 + 12X2Y + 12XY2 + 4Y°3
or
SAA= 0.2X5 4+ X4Y + 2¥X3Y2 + 2X"2¥Y"3 +X7Y4

Here "S" denotes the integral sign, "J". Note that the arbitrary
constant of integration is suppressed as is customary in integral
tables.

The polynomial program uses techniques similar to the rational
program to minimize yet detect excessive consequences of the underlying
limited-precision, limited-magnitude BASIC arithmetic. For example, the
polynomial program prints a warning message if evaluation of the given
and expanded formulas at any of several extra sample points yields a

2-6

PICOMATH-80 Using the Polynomial Program February 10, 1981

relatively large discrepancy.

Whether or not such a warning message is displayed, the program
finally breaks execution, returning control to the command level after
displaying an epilogue message instructing you to modify line 20 and
rerun if desired. This message also announces that in the expanded
equivalent of line 20, any term containing X must be of total degree <=
6, any term containing Y must be of total degree <= 4, and any term
containing Z must be of total degree <= 2. For example, X*Y*Z is not a
representable term. Thus, it may be necessary to rename variables in
the original statement of a problem so that X has the highest degree, Y
has the next highest degree, and 7 is the remaining variable, if any.

Simple substitutions often make this program applicable to problems
that are initially outside its scope. For example, replacing X2 by X
permits you to determine the coefficients in the expansion of (X"2 +
1)76. As another example, ((X+Y)“"4+17)"2 can be expanded with some
manual assistance by separately computing (Z+17) "2 and (X+Y) "4, then
manually substituting the latter result for Z in the former result,
followed by a manual expansion of 272 therein.

Do you interpret -x2 +5 as meaning =-(x"2) +5 or (-x)"2+5,
which simplifies to x2 + 52 As with most people and most programming
language implementations, PICOMATH output employs the former
interpretation. However, beware that some programming language
implementations employ the latter interpretation, and that PICOMATH
input utilizes the built-in precedence rules. Experimentally determine
the local built-in rules, then parenthesize if necessary to accomplish
the desired effects. Also, although PICOMATH does not produce nested
exponentiations as output, some implementations permit unparenthesized
repeated exponentiations in line 20 of the program. If so, be sure to
learn whether X273 is interpreted as X"(273) or (X"2)73, then
parenthesize if necessary to achieve the desired effect.

The polynomial program uses polynomial interpolation, just as the
rational program uses rational interpolation. However, unlike rational
expressions, a polynomial does not entail the embarrassing possibility
of being undefined for finite values of its variables. Thus, the prog-
ram can use integer values of small magnitude as sample values for the
polynomial variables, which usually helps reduce roundoff errors. Un—
fortunately, overflow, underflow or zero-divide errors are possible.
For example, even the relatively benign appearing formula

20 A= (1E-7 *X) "6 + (X+1E7) " 6

produces both underflow and overflow when sampled at X=1, Lésing
ar%thmetic that limits nonzero magnitudes to lie between about 10739 and
1038, as is quite common.

The formula on line 20 can entail non-polynomial subexpressions
if the formula is defined at all of the sample values and if the result
can be simplified to a polynomial. For example, to determine if

2x3-3x+4

2-7

PICOMATH-80 Using the Polynomial Program February 10, 1981

exactly divides
6 x> +8x%+13 x3+22x-8,
(and if so to determine the resulting quotient), we can use

20 A = (6*X"5 + 8*X"4 + 13*X"3 + 22*X —~ 8)/ (2*X"3 - 3*X + 4)

Then, the result is the quotient unless a "serious discrepancy" warning
indicates that exact division is impossible. A zerodivide or overflow
message for such an example is probably due to a sample point coinciding
with a zero of the divisor.

Here are some examples that should work on any reasonable 7-digit
floating-point arithmetic, thus helping to test your implementation of
the polynomial program:

(3x42)0 --> 729 %6 + 2916 x° + 4860 x* + 4320 x3 + 2160 %2 + 576 x + 64,
(x+1) * (x+2) * (x+3) * (x+4) * (x+5) * (x+6)

—> %6 +21 x5 + 175 x4 + 735 x3 + 1624 %2 + 1764 x + 720,
(15 x -~ 16)3 —> 3375 x3 - 10800 x2 + 11520 x - 4096,
(x +23)3 —> x3 + 69x2 + 1587 x + 12167,
(x+1)6 + (x+y+1)4 + (x+y+z+1)2 —=> %6 + 6 x5 + 16 x4 + 4 x3y + 24 x°

+6 x2y2 + 12 x2y + 22 %2 + 4 xy3 + 12 xy2 + 14 xy + 2 xz + 12 x

+ y4 + 4 y3 + 7 y2 +2vyz+6y+ z2 +2 z + 3,

d
— [(x+1)6 + (x+y+1)4 + (x+y+z+1)2]
dx
-=> 6 x° + 30 x4 + 64 x3 + 12 x%y + 72 x2 + 12 xy?

+2xy+ 4 x+4y3+12y2 +14y +2 2z + 12,

J 140 + eiyrDd? + (xy+z+1) 2] ax
> 0.142857 x7 + x6 + 3.2 x° + x4y + 6 x4 + 2 x3y2 + 4 X3y
+7.33333 %3 + 2 x2y3 + 6 x2y2 + 7 x2y + %2z + 6 %2 + xy4

+ 4 xy3 + 7 xy2 + 2 xyz + 6 xy + xz2 + 2 xz + 3 x.

PICOMATH-80 Using the Trigonometric Program February 10, 1321

2.3 Using the Trigonometric Program

Use of the trigonometric program is similar to the polynomial
program, except that the given and resulting expressions are
trigonometric rather than polynomials. Typically, after loading the
trigonometric program the user replaces the example line 20 with an
analogous line assigning to variable A an expression that the user wants
simplified to a linear combination of the terms

1, sin x, cog X, tan x, cot x, ¢sc x, sec x,
sin X cCos x, S1n“x, sec“x, tan x sec x, cot x csc x,
sin y, cos y, sin x sin y, sin x cos y, cos x sin y, cos x cos y,

meaning a sum wherein each term is one of the above, perhaps multiplied
by a numerical coefficient. These terms are linearly independent,
meaning none of them can be expressed as a linear combination of the
others. Consequently, when the nonzero terms are displayed in a fixed
order, such a linear combination provides a unique canonical (meaning
standard) form for all expressions that are equivalent to any such
linear combination. As a special case, any expression equivalent to
zero simplifies to zero, so candidate trig identities may be verified or
disproved by determining if the difference in their sides simplifies to
zero. Moreover, many of the nonzero trig expressions prevalent in
trigonometry texts are equivalent to such a linear combination. (For
example, cos(2 x) and sin(x~y+1/2) are in this class.) Also, although
simplicity is in the eye of the beholder, the resulting linear
combination is often the simplest possible form of the original
expression for most purposes. At any rate, the result provides a
possibly different alternative to the original form, which can then
serve as a point of departure for further transformations using the
Fourier program or manual techniques.

When entering a trig expression on line 20, note that most BASIC
implementations:

1. do not provide built—-in secant, cosecant and cotangent function;
2. require all user-defined functions to be spelled beginning "FN";
3. permit only one letter following FN.

Thus, either you may have to avoid these three trig functions in
favor of their reciprocals, or you may have to suffer names such as FNE
for sEc, FNS for cSc, and FNO for cOt. At best, you will probably have
to use names such as FNSEC, FNCSC and FNCOT. Experimentation will
quickly determine the situation for a particular BASIC implementation.

As an example of program usage, you could modify line 20 to be

20 A =1~ COS(PI/2-X)"2 / (1 + COS(X))

Note how the trig program presumes radian measure, and how we can use

"PI" to represent the ratio of the circumference to diameter of a

2-9

PICOMATH-80 Using the Trigonometric Program February 10, 1981

circle. (This may be spelled "P1l" or merely "P" on BASIC
implementations that do not permit multiple-letter variable names.)

Next, enter the RUN command, after which the program interactively
asks the user to enter E for Expansion, D for Differentiation, or I for
Integration, as desired. After receiving a valid response to this
query, the program proceeds to determine then display the desired
result, such as respectively

A=C0S X
or
dA/dX = =SIN X
or
S AdX = SIN X

where "S" denotes the integral sign, "JM. Note that the arbitrary
constant of integration is suppressed as is customary in integral
tables. Note also that although parentheses around simple function
arguments are omitted in PICOMATH output for brevity, most
implementations require them in line 20. PICOMPHH%output similarly
abbreviates powers of functions, such as using SIN“X rather than the
equivalent SIN(X) "2 probably required in line 20.

As with the rational program, the trigonometric program entails the
possibility of underflow, overflow or zerodivide, because line 20 may
contain tangents, secants, cotangents, cosecants, and denominators that
are zero or nearly so at sample points.

Here are some examples that should work on any reasonable 7-digit
floating-point arithmetic, thus helping to verify your implementation of
the trigonometric program:

tanZx
——————— =3 5in2x,
1+ tanzx

tan x sin x + cos x -—> seC ¥%,.

X+y Xy
sin (-—-) cos (---) —> 0,5 siny + 0.5 sin x,
2 2
sin (x+31/2) cos (x-31V/2)
+ ""> - tan X + l'
cos (x+) sin (x+172)
1 + cos(2 x) sin(2 x)
cos X sin x
sin2x
l- - -=> cos x,
1l + cos x

2-10

PICOMATH-80 Using the Fourier Program February 10, 1981

sin x + cos x tan x

-—> 2 Ccos X,
tan X

cosdx - sin4x -—> 1 -2 sinzx,
2 cos2(x/2) -1 —> cos X,

(cse?x - 1) tan x --> cot X,

(sec X = cos X) * (tan x + cot x) —> tan x sec x,
(tan x + cot x) sinx cos x -—-> 1,
cot (x/2) =—--=> cot x + csc x,
1 + tan®x ,
——————— —> sec%x - 1,
1+ cot2x
sectx - tan%x -—-> 2 sec2x - 1,
sin x

cot X + ——=————=— --=> (CSC X,

1+ cos x
d
- [csc (2 %) cos x] —> -0.5 cot x csc x,
ax

sec x ~tan x -1

-=> tan x - secC X,
tan x + sec x - 1

f‘tan xdx =--> - 1n cos X.

2.4 Using the Fourier Program

Use of the Fourier program is quite similar to the trigonometric
program. In fact, the Fourier program is actually another trigonometry
program that tends to transform expressions into a different form than
that of the "trigonometric" program: The Fourier program transforms
products and powers of sines and cosines into linear combinations of
sines and cosines of X and integer multiples of X -- the opposite of
multiple-angle expansions. The name derives from the applicability to
Pourier analysis and the desire to avoid confusion with the other

program.

As with the trigonometric program, you replace line 20 with an
analogous line assigning a trigonometric expression in X to variable A,
then enter the RUN command and answers the query choosing Expansion,
Differentiation or Integration. The program then proceeds to display
the corresponding "Fourier expansion".

2-11

PICOMATH-80 Using the Fourier Program February 10, 1981

The Fourier program uses techniques similar to the other programs
to minimize yet detect excessive consequences of the underlying limited-
precision PASIC arithmetic. For example, the Fourier program displays a
warning message if evaluation of the given and expanded formulas at any
of several extra evaluation points yields a relatively large

discrepancy.

Whether or not such a warning message is displayed, the program
finally breaks execution, returning control to the command level after
displaying an epilogue message instructing the user to modify line 20
and rerun if desired. This message also announces a bound on the
maximum multiplicity of angle X that the program can produce as an
argument of a sine or cosine. This multiplicity is set in the program
as the value of variable named M, which can be increased or decreased by
the user if desired. (Total computing time increases approximately
quadratically with M, and roundoff error also increases with M.)

The Fourier program uses an interpolation technique analogous to
those used by the other programs. However, the terms

{1, cos %, sin %, cos 2x, sin 2x, Ccos 3X, ...}

are all bounded and numerically dquite distinguishable over the sampling
interval, compared to the terms employed by the other programs. Conse-
quently, the Fourier program is usually far less subject to excessive
roundoff errors, overflow, underflow or zerodivide.

Expressions that can be transformed to the appropriate
trigonometric form are expressions equivalent to polynomials in sines
and cosines of angles having the form

nX+c

where n is integer and ¢ is a constant, perhaps involving PI, which may
be spelled Pl or P in some implementations. Thus

(2.7 + tan(x+1.5) cos(x+1.5) + sin(=3x +%/13))2

is within the representable class, whereas

sin(1.5x)

sin x + cos(2x)

is not. Although some expressions are representable using both the
trigonometric and Fourier programs, each program is applicable to
expressions that the other is not. Consequently, it is often worth
trying the other one if the first choice does not simplify the
expression enough.

One use of this program is to help prove or disprove trigonometric
identities: After manually simplifying the difference in the two sides
of an alleged identity into a ratio of two appropriate trigonometric
polynomials reduced to lowest terms, you can independently submit the

2~12

PICOMATH—-80 Using the Fourier Program February 10, 1981

numerator and denominator to the program to determine whether or not
they are equivalent to zero. The alleged identity is true if only the
numerator is equivalent to zero, whereas the alleged identity is false
if neither the numerator nor denominator is equivalent to zero.

As already mentioned, another use of this program is for spectral
or harmonic Fourier analysis. If line 20 represents a function of
periodicity 2w, then the corresponding display approximately represents
its truncated Fourier expansion -— perhaps the exact expansion if it is
finite. (It is of course trivial to scale the independent variable of
any periodic function so that its period is 2F, so there is no essential
lack of flexibility in téhis regard.) For example, to determine the
Fourier expansion of sin®x, we simply use

20 A = SIN(X) " 8

whereas to determine the approximate Fourier expansion of the rectified
sine wave Isin(x/2)| we merely use

20 A = ABS(SIN(X/2))

Here are some examples that should work on any reasonable 7-digit
floating-point arithmetic, thus helping to test your implementation of
the Fourier program:

2 sin (5 %) cos (3 x) -——> sin (2 x) + sin (8 x),
(cos x + sin x)8 -=> 4.375 + 7 sin (2 x) - 3.5 cos (4 x) - sin (6 %)

+ 0.125 cos (8 x),

d

-— [sin (5 %) cos (3 x)1 —> cos (2x) + 4 cos (8 x),

ax

Jﬂ [sin (5 %) cos (3 x)] dx —> =-0.25 cos (2 x) - 0.0625 cos (8 x),
d

— [(cos x + sin x)"8] —-> 14 cos (2 %) + 14 sin (4 x) - 6 cos (6 x)
ax

- sin (8 x),

J" [(cos x + sin x)"8] d&x —> 4.375 x - 3.5 cos (2 x) - 0.875 sin (4 x)
+ 0.166667 cos (6 x) + 0.015625 sin (8 x).

2-13

PICOMATH-80 Copying Policy February 10, 1981

3. COPYING POLICY

The most convenient and economical way for an individual to acquire
software is to personally duplicate the printed documentation and a
machine-readable form of the program if copies and duplication
facilities are locally available. On the other hand, software
manufacturers need compensation for their creative efforts to cover the
development and advertising expenses. Accordingly, we have devised a
simple means of providing customers with this convenience and economy
while retaining a clear conscience and incurring no anxiety about the
severe penalties for copyright violation:

We hereby grant end users permission to duplicate the
PICOMATH-80 Reference Manual for a royalty of $1 per copy or
portion thereof, provided each copy includes at least sections
1 and 3 in their entirety.

_ We hereby grant end users permission to install PICOMATH-
80 for a royalty of $2 per machine on which it is installed or
used, provided the installation is performed in accordance with
‘the directions of section 6 of the PICOMATH-80 Reference
Manual.

If you wish to avail yourself of these opportunities, merely mail
a check, money order, or even cash, to The Soft Warehouse at Box 11174,
Honolulu, Hawaii 96828. We even offer a 33% discount for royalties
totaling $6 or more, which should benefit schools, clubs, or
organizations having more than one computer.

This generous software distribution honor system is unique so far
as we know. We hope that the experiment works, which would encourage us
and other software manufacturers to distribute other software in this
convenient manner in the future.

Having end users duplicate the software saves us substantial
expense, so we are glad to permit it. However, we plan to continually
improve PICOMATH, so you may prefer to obtain a new copy of the program
at a computer store or from your licensed hardware manufacturer or from
Programma International at 2908 N. Naomi St., Burbank, California,
91504. Each copy includes an extensive reference manual explaining how
PICOMATH works and how to adapt the generalized program listings therein
to other languages and computers. Also, the machine-readable version
provided with the manual may have enhancements that exploit extra accu-
racy, memory space, or special features of the particular implementation
for which it is intended. The Soft Warehouse does not directly distri-
bute manuals or machine-readable versions of PICOMATH to end users.

Licenses for distributing machine-readable versions for additional
specific languages on specific machines are available from the Soft
Warehouse to hardware manufacturers or major software distributors.

PICOMATH-80 The Professional Society February 10, 1981

4. HOW TO LEARN MORE ABOUT COMPUTER ALGEBRA

We expect that many who experience PICOMATH or a full-fledged
computer algebra system will want to learn more about this fascinating
subject or will want to try a more powerful system. Accordingly, here
is a brief guide to the relevant professional society, the literature,
and some widely available systems.

4.1 The Professional Societies

The Association for Computing Machinery Special Interest Group on
Symbolic and Algebraic Manipulation is the major international
professional society for computer algebra. Their SIGSAM Bulletin is the
most concentrated and up-to-date source for abstracts and working papers
together with announcements of meetings and systems. For information
about joining, including special student rates, write the ACM at 1133
Avenue of the Americas, New York, NY 10036.

‘Some European groups devoted to computer algebra are:

1. SAM-AFCET: Contact M. Bergman, Faculte des Sciences de Luminy, Case
901, 13009; or contact J. Calmet, Universitat Karlsruhe, Institut
for Informatik I, 75 Karlsruhe 1, Postfact 6380, West Germany.

2. NIGSAM: Contact Y. Sundblad, Department of Numerical Analysis and
Computer Science, KTH S-10044 Stockholm, Sweden.

3. SEAS/SMC: Contact J. A. van Hulzen, Twente University of

Technology, P.O. Box 217, 7500 AE enschede, The Netherlands.

4.2 The Literature
Regrettably, there is not yet a textbook devoted to computer

algebra, and the few textbooks that contain relevant material are rather
advanced. Most of the information is sparsely scattered in research
journals or less accessible conference proceedings and reports.
However, the following relatively accessible references contain surveys,
bibliographies, and collections of articles that should serve as a good
point of departure for exploring most facets of the literature:
1. ACM SIGSAM Bulletin, ACM, New York, all issues.
2. Communications of the ACM 14, No. 10, August 1971.
3. SIAM Journal on Computing 8, No. 3, August 1979.
4. Communications of the ACM 9, No. 10, August 1966.
5. Journal of the ACM 18, No. 4, October 1971.
6. P.S. Wang, editor, Proceedings of the 1981 ACM Symposium on Symbolic

and Algebraic Computation, ACM Order No. 505810, P.O. Box 64145,
Baltimore, MD 21264, $23.

4-1

PICOMATH-80 The Professional Society February 10, 1981

7. E.W. Ng, editor, Symbolic and Algebraic Computation, ILecture Notes
in Computer Science, 72, Springer-Verlag, New York, 1979.

8. R.D. Jenks, editor, Proceedings of the 1976 ACM Symposium on
Symbolic and Algebraic Computation, ACM, New York, 1976.

9. V.E. Lewis, editor, Proceedings of the 1979 MACSYMA User's
Conference, M.I.T. Laboratory for Computer Science, 545 Technology
Square, Cambridge, Massachusetts, 1979.

10. C.M. Anderson, editor, Proceedings of the 1977 MACSYMA User's
Conference, NASA CP-2012, 1977.

11. Knuth, D.E., The Art of Computer Programming, Volume II,
Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1980.

12. Stoutemyer, D.R. and Yun, D.Y.Y., "Symbolic Mathematical

- Computation”, Encyclopedia of Computer Science and Technology,

J. Belzer, A.G. Holzman and A. Kent, editors, M. Dekker, New York,
Supplementary Volume 15, pp. 235-310.

4.3 Widely Available Systems

Despite an almost total lack of publicity, computer algebra has
been available for large mainframe computers since 1951 when the first
symbolic differentiation program was written. Since then there have
been numerocus major general-purpose computer algebra systems
implemented. In contrast to the PICOMATH demonstration package:

1. They require up to 400 times as much memory space.

2. They accommodate a significantly larger class of expressions,
including equations, multivariate and matrix or tensor expressions.

3. They provide their own indefinite-precision arithmetic to avoid the
serious limitations of finite-precision arithmetic.

4. They accommodate much larger expressions having hundreds or even
thousands of terms, with coefficients having hundreds of digits.

5. They provide a larger suite of built-in and optional
transformations, including factoring and partial-fraction expansions
for example.

6. They permit the user to save symbolic results as values of variables
for use in subsequent expressions, thus helping the user to perform
a sequence of related operations.

7. They provide convenient facilities permitting the user to write
function definitions and simplification rules to extend the built-in
capabilities by enlarging the allowable class of expressions or the
variety of available transformations.

PICOMATH-80 Widely Available Systems February 10, 1981

Moreover, some of these systems are more interactive than PICOMATH,
permitting an exploratory dialogue wherein the user enters a sequence of
expressions, assignments, function definitions and simplification rules
at a terminal, viewing each corresponding result before deciding how to
proceed. Each result, function definition or simplification rule is
available for immediate use in each subsequent expression. Interaction
is less crucial for very large well-defined problems, but interaction is
highly desirable for “"one of a kind" problems or moderate-sized problems
that could with some effort be done manually, Interactive systems are
also far more motivating for educational purposes, where the problems
tend to be small, numerous and varied.

In approximate order of increasing memory requirements, here are
some of the most widely available general-purpose systems that are
currently supported:

1. muMATB-79t™ is an interactive system that runs on microcomputers
based on the 6502, 8080, 8085, or Z80 microprocessors, provided they
have enough memory and an appropriate disk operating system. These
include CP/M with at least 32 kilobytes of RAM memory, the Radio
Shack TRS-DOS with at least 32 kilobytes of such memory, or the
Apple computer with at least 48 kilobytes of such memory. muMATH is
distributed to end users, computer stores and hardware manufacturers
by Microsoft at 10800 N.E. Eighth, Suite 819, Bellevue Washington
98004, and muMATH is also distributed by the authors: The Soft
Warehouse, at Box 11174, Honolulu, Hawaii 96828, The less common
CP/M disk formats are available from Lifeboat Associates, 1651 Third
Avenue, New York, N.Y. 10028.

2. SAC-2 is a non-interactive system which runs on any computer that
can directly run a 1966 standard FORTRAN program of at least about
120 kilobytes. Information about SAC-2 is available from Professor
George Collins, Computer Sciences Department, University of
Wisconsin, 1210 West Dayton St., Madison, Wisconsin 53706.

3. FORMAC runs on any IBM 360 or 370 that can accommodate a PL/I
program of at least about 150 kilobytes. FORMAC is semi-interactive
on some operating systems. Information about FORMAC is available
from Knut Bahr at GMD/IFV, D-6100, Darmstadt, Germany.

4. ALTRAN is a non-interactive system which runs on any computer that
can directly run a 1966 standard FORTRAN program of at least about
270 kilobytes. Information about ALTRAN is available from the
Computing Information Library, Bell Laboratories, 600 Mountain
Avenue, Murray Hill, N.J. 07974.

5. REDUCE is an interactive system that runs on the IBM 360 or 370, DEC
10 or 20, Univac 1100 series, Control Data Cyber series, Burroughs
6700, and several other computers, requiring a minimum of about 350
kilobytes. For information about REDUCE, write Anthony Hearn, Rand
Corporation, 1700 Main Street, Santa Monica, California 90401.

Additional systems are announced in back issues of the ACM SIGSAM
Bulletin.

PICOMATH-80 Computer Algebra in Education February 10, 1981
5. COMPUTER ALGEBRA IN EDUCATION

It should be clear to anyone who has experienced a general-purpose
computer-algebra that it has enormous potential for use in education as
well as research. Not only can computer algebra make computing more
attractive to mathematically inclined students; computer algebra can
make mathematics more attractive to computer enthusiasts. It provides a
great opportunity for mutual reinforcement and cross motivation between
math and computer education.

Personal computers are becoming so prevalent that students,
engineers, scientists, and mathematicians will soon be using computer
algebra extensively. It should not be more than a year or two before
general-purpose computer algebra is available on pocket calculators,

ecause:

1. Several manufacturers now make low wattage "CMOS" versions of most
popular 8-bit microprocessors, and CMOS versions of some 16-bit
microprocessors are currently under development.

2. There are already hand-held terminals with 32 kilobytes of low
wattage memory.

3. There are already hand-held calculators with a sufficiently large
low watttage liquid-crystals to display a reasonably large
mathematical expression — perhaps one term at a time.

Eventually some enterprising manufacturer will surely merge these
three technologies, producing a hand-held calculator capable of running
a full-fledged computer—-algebra system such as muMATH. Thus, it be-
hooves every math and computer science educator to explore how this
revolutionary tool can be used to aid education.

It is undeniably true that most students are far more intrigued and
motivated by the artificial intelligence and game playing applications
of computers than by the accounting and numerical applications that
currently account for most computer usage. Thus, it is advisable to
exploit this strong preferential interest to help teach both mathematics
and computer science. If more good math, science, and engineering
students are attracted to computers and more good computer-oriented
students are attracted to math, then more students will ultimately learn
to use computers effectively for both numeric and nonnumeric purposes.

Computer algebra makes a highly motivating introductory computer
programming course for math, science and engineering students. Computer
algebra is also an ideal principal language for such students, because
numbers and arithmetic comprise appreciably less than half of the
kindergarden through calculus math curriculum. Moreover, the limited-
precision integer and floating-point arithmetic typical of traditional
programming languages is not the kind of arithmetic taught in this
curriculum or used in everyday life.

PICOMATH-80 Computer Algebra in Education February 10, 1981

Some educators may fear that computer algebra might cause algebraic
skills to atrophy or prevent them from developing in the first place.
Similar concerns were undoubtedly expressed about Arabic numerals,
multiplication tables, logarithms, Laplace transforms and pocket
numerical calculators; but we have survived their convenience. The
Mational Council for Teachers of Mathematics strongly supports the use
of numerical pocket calculators in classrooms, and every reason for this
support is even more true of computer algebra.

Automatic symbolic mathematics makes it possible for students to
concentrate on basic mathematical concepts rather than spending an
inordinate amount of time mechanically performing transformations.
Computer algebra lets students explore such fundamental concepts as
commutativity, associativity, groups and rings. Moreover, the extensive
algebraic capabilities of computer algebra enables students to
investigate larger examples than is otherwise practical., Patterns thus
revealed may suggest useful theorems. Conjectured patterns thus
violated provide counterexamples against false hypotheses. Thus,
computer algebra can contribute to teaching mathematical discovery.

Fxisting computer-algebra systems can also make other educational
contributions:

1. Trace packages can be used to let students witness each step of an
algebraic simplification, rather than merely the final result.

2. The very fact that algebra and calculus can be automated should
encourage average and poor math students that the flashes of
inspiration characteristic of quick students are unnecessary for
those operations -- there is revealed hope for the slower more
methodical students.

3. For students who know how to program in the language in which the
computer algebra packages are written, inspection of the underlying
algorithms can help them learn methods for accomplishing the
operations. Moreover, by programming extensions to the built-in
facilities, students can reinforce understanding of the built-in and
extended operations.

The above are ways that existing computer algebra systems can be
used right now. However, there is a potential for much more. 1In
conjunction with a computer—aided instruction package, existing computer
algebra systems could be used for extremely flexible and intelligent
algebra drill, testing, and tutorial dialogue.

Mone of the existing computer algebra systems is by itself a
computer~aided math instruction system. Thus, someone experienced in
computer-aided instruction could employ PICOMATH as part of a set of
interactive math lessons or examinations.

5-2

PICOMATH-80 How the Polynomial Program Works February 10, 1981

6. HOW PICOMATH WORKS

Reading this section is completely unnecessary for usage or
routine installation of PICOMATH. This explanation of how PICOMATH
works is included primarily to satisfy the curiousity of those who are
interested. The design goal of extreme compactness necessitated
reliance upon built-in approximate floating-point arithmetic and use of
indirect synthetic techniques that are quite different from those
generally employed manually or by more sophisticated large symbolic math
systems. Consequently, a full appreciation of this explanation requires
substantial experience in both computer science and numerical analysis.
Thus, read on if you wish to pick up whatever you can, but don't despair
about points that presume more experience or training than you possess.

PICOMATH generally uses the technique of evaluating the given user-
supplied formula at several numerical values of its independent
variables, then interpolating these sample values by an expanded
polynon}ial, ‘rational expression, trigonometric expression, or Fourier
expression.

Interpolation is most often used to estimate numerical values of a
physical quantity between experimentally-measured samples, or to
estimate numerical values of an irrational function between tabulated
approximate values: After determining the coefficients in the
interpolant, it is evaluated at the desired intermediate numerical
values of its variables in order to produce a numerical result. 1In
contrast, after determining these coefficients PICOMATH displays them
interspersed with literal character-string constants such as "X"" or
"SIN(", in order to display a symbolic representation of the interpolant
expression, Provided the given expression is mathematically equivalent
to one in the employed class of interpolants, and provided the degree or
multiplicity of the interpolant is sufficient, the latter is
mathematically equivalent to the given unexpanded expression, to within
cumulative roundoff error. In the polynomial, trigonometric and Fourier
case, it is trivial to derive the coefficients of the derivative or an
antiderivative of the interpolant from the coefficients of the inter-
polant, so these options are provided there. The following subsections
give a more specific explanation for each program:

6.1 The Polynomial Program

For multivariate polynomial interpolation using the same general
form of interpolant repeatedly, the most straightforward technique is to
use a preconditioned formula derived using the method of undetermined
coefficients. Since this general method is also used in the
trigonometric program, we describe it here in some generality: Let w
denote the vector of independent variables, such as (x, y, 2) in our
polynomial program. We wish to interpolate an expression s = f(w) by
a linear combination of n given independent basis functions:

s = aj f1(w) + ay fo(w) + ...+ ap £,(W)

based on samples

PICOMATH-80 How the Polynomial Program Works February 10, 1981

Sl = f(Wl), 82 = f(wz)’ seey Sn = f(Wn)'
This implies that

]

a8 f1(wp) + ap fo(w) + ..o + ap fh(wW)
ay f1(wp) + ag folwy) + ... + a fh(w)

oo

3y f1(wy) + ap falwy) + ... + ap fy(wy) = sp.

These are n simultaneous linear algebraic equations for n unknowns a;
83, ...y 8,. Consequently, in matrix notation, !

Sl,

Sar

F a = s.

Thus, to determine the interpolant coefficients, we merely have to solve
these equations.

In order to display results fully expanded, the polynomial program
uses a basis of monomials such as x°, x°, x%, X2y, etc. Given this
basis, we would like to choose sample points that minimize the
expectations of overflow, underflow, or severe roundoff error. No fixed
set of sample points can be adequate for all possible polynomial
expressions on line 20 or the program, but we would like a set that is
good for the largest percentage of examples that people are likely to
try with this program. Here are some considerations that can help us
choose a good set of points:

People tend to have a strong preference for formulating
mathematical models scaled such that the expressions primarily or
entirely entail integer coefficients of small magnitude —- with a bias
toward positive coefficients, especially the coefficient 1. It is
especially easy for us to grasp the significance of the integers 0
through 100, so we tend to choose origins and units that produce such
results. For example, this explains the popularity of percentages over
the equivalent less arbitrary decimal fractions between 0 and 1.

For similar reasons, if the zeros of a polynomial have physical
significance or are of mathematical interest, which is often the case,
then there is a tendency for people to formulate the mathematical model
in such a way that the zeros occur at x=0 or at points x having absolute
values that are neither extremely small nor large compared to l.

For polynomial interpolation, the expectation of excessive roundoff
error is minimized if the sample abscissas interlace the zerocs of the
polynomial: In the univariate case if the zeros are all simple and
real, a good set of sample abscissas is roughly midway between each pair
of adjacent zeros and also outside each end zero by an amount roughly
equal to the distance between each end zero and its adjacent interior
sample abscissa. Multiple, complex, and multivariate zeros complicate
the issue, but the same general principle applies —— we would like the
sample points scattered between the zeros more or less proportionally to
the density of the zeros, taking into account multiplicities. However,
we do not know the locations of these zeros at the beginning, and we do

6-2

PICOMATH-80 How the Polynomial Program VWorks February 10, 1981

not want to waste time and increase the risk of overflow or underflow
in an attempt to isolate them. Thus, in view of the widespread
predilection for small-magnitude integers, a reasonable strategy is to
use the origin and uniformly spaced points clustered about the origin at
distances neither quite small nor quite large compared to l. Points
having small integer components have the additional advantage that if
the coefficients of the given unexpanded polynomial are also integer and
'if for integer exponents the """ operator is computed using repeated
multiplication rather than logarithms and exponentials, then no roundoff
errors are incurred when executing line 20 of the program until the
magnitude of intermediate results exceed the largest integer that is
exactly representable in the underlying floating-point arithmetic.

The matrix P is the same every time the program is run.
Consequently, this is one of those few instances where it is worth
inverting once and for all so that the prﬁgram need merely multiply the
vector s by the precomputed matrix F - in order to determine the
interpolant coefficients a. Moreover,_ to minimize roundoff error it is
desirable and worthwhile to compute F~1 exactly, which may be done using
more sophisticated computer algebra programs such as those listed in
section 4.3, because the sample points all have small-magnitude integer
components. (This is another reason for choosing such sample points.)
In our polynomial case this exact inverse turns out to have relatively
simple fractions as entries, with a large portion of entries that are
zero. Consequently, to save space and time the sample valyes s are
stored as individual scalar variables, and the elements of F™* are not
stored in an array. Instead, the coefficients are computed directly in
terms of the sample values in a manner that exploits factoring as much
as possible to further reduce roundoff error. Also, the computed
coefficients are subjected to a smoothing process: If a coefficient is
within 0.01 of an integer, then the program rounds the coefficient to
that integer in an attempt to reduce the annoying effects of roundoff
error discussed in section 2.l1.

Here is a brief outline of the program and a dictionary of its
variables:

PICOMATH-80 How the Polynomial Program Works February 10, 1981

Outline of the Polynomial Program

Lines Purpose

5-10 Declare double precision and integer variables, then skip
around a subroutine and the prefatory remarks

20-30 Subroutine assigning a polynomial in X, Y and Z to A

40-180 Prefatory remarks

190 Initializations, including array dimensioning

200-250 | Query user for choice between Expand, Derivative or Integral,

and_display left side of result equation

X%, x2, and x

!
I
I
|
|
I
I
|
260-320 | Collect enough sample values to determine the coefficients of
I
I
I
I
I
|
I
I

330-350 | Determine coefficients of x6, x5, x4, & display nonzero terms
360-450 | Collect more samples to determine more coefficients
460-530 | Determine additional coefficients & display nonzero terms
540-550 | Collect 2 more sample points, recycling variables E, D and B
560-600 | Determine additional coefficients & display nonzero terms
610 Collect two final sample points, recycling variable C
620-660 ! Determine remaining coefficients, displaying nonzero terms
670 i Display a zero if no terms were displayed before
680 i Terminate display line
690-750 } Compare given and derived expressions at 4 transcendental
| points, then display a warning if any discrepancy is not
! relatively small considering Accuracy("™")
760-790 i Display a message explaining how to proceed to next example
800 ’i Stop
810-960 i Subroutine for saving smoothed coefficient and displaying
f corresponding term if nonzero
970~980 E Subroutine for smoothing a coefficient
990—1040i Subroutine comparing given & resulting expressions at sample
! points, updating maximum discrepancy & expression magnitudes
1050 i End

6-4

PICOMATH-80 How the Polynomial Program Works February 10, 1981

Sro M }ou?‘ LN

Sig feselt
Dictionary of Variables in Polynomial Program
Names | Purposes
A l Latest sample ordinate
[array A I Interpolant coefficients
@'% AS I Response to Expand, Derivative or Integral query
B,C lr Sum and Difference of 2 opposing ordinates
3‘-};/@ BS I Cofactor of the numerical coefficient and power of X
D,E,H,I1,J,K, 1I Saved sample ordinates
L,M,P,QrR,S,T!
F l Saved sample ordinate or maximum ordinate magnitude
G I Saved sample ordinate or maximum discrepancy
N l Dummy subscript
(0] l Output Flag: Has a term already been displayed?
U I Candidate smoothed coefficient
v T Multiplier for coefficient when derivative or integral
W T Multipurpose temporary
X, Y, Z l Independent variables

6-5

PICOMATH~80 How the Trig Program Works February 10, 1981

6.2 The Trigonometric Program

The trigonometric program uses the same general technique as the
polynomial program, except that it employs a different set of sample
points and a different set of basis functions. The six fundamental
trigonometric functions have numerous interdependencies, so a certain
amount of judgement, care and experimentation is required to select a
linearly independent basis that spans the most useful class of
composite trigonometric functions.

Because of nontrivial denominators allowed in line 20 and because
of the tangents, cotangents, secants and cosecants among its basis, the
trigonometric program entails the hazard of sampling at or near a pole.
Thus, we must avoid sampling at the particularly likely poles x = 0,
#7772 or . On the other hand, other multiples of M6 or 74 lead to
especially simple entries in matrix F, making it possible to invert F
exactly. These are the reasons behind our particular choice of sample
points. However, it is still possible for a sample point to coincide
with a pole of the expression in line 20 even though the corresponding
simplified expression is in the representable class. For example,
evaluation of

1 - tanzx

1 - cot2x

at x=1W4 may cause a_zerodivide or overflow even though the expression
simplifies to 1 - sec?x, which is in the representable class.

Here are a brief outline and dictionary of variables in the
program:

- PICOMATH-80 How the Trig Program Works February- 10, 1981

Outline of the Trigonometric Program

Lines | Purpose
5-10 i Declare double precision and integer variables, then skip
! around a subroutine and the prefatory remarks
20-30 E Subroutine assigning a trig expression in X and Y to A
40-180 i Prefatory remarks
190 i Initializations, including array dimensioning
200~-220 i Definitions of secant, cosecant and cotangent functions
230-250 i Query user for choice between Expand, Derivative or Integral
260~290 i Display answer announcement and left side of result equation
300~470 ; Collect sample values
480 E Recycle X, Y and P as auxiliary constants
490-960 i Determine coefficients, displaying nonzero terms
970 g Display a zero if no terms were displayed before
980—1010i Compare given and interpolated expressions at 4 more points
1020- i Display a warning if any discrepancy is relatively large
1050 ! considering Accuracy(ATN).
1060~ } Digplay a message explaining how to proceed to another
1110 | example
1120 i Stop
1130~ ; Subroutine for smoothing and saving a coefficient, then
1200 ! displaying the corresponding term if it is nonzero
1210~ i Subroutine for comparing given & interpolated expressions at
1270 ! a point, updating maximum discrepancy & expression magnitudes
1280 ; End

PICOMATH-80

How the Trig Program Works February 10, 1981

Dictionary of Variables in Trigonometric Program

Names Purposes

A Latest ordinate sample

array A Interpolant coefficients

AS Response to query about Expand, Integral or Derivative

Sums and Differences of opposing ordinates
F, G and H are also used in discrepancy testing

3
T
]
-+
(]
T
1.
T
[
T
L
U
)
1
I
L]
)
U

B$ Cofactor of numerical coefficient

N Dummy subscript

0 Output flag: Has a term already been displayed?

P PI/4 or 2 * 27(1l/2) -2

PI Ratio of circumference to diameter of a circle

U ! Candidate smoothed coefficient

\Y i Multiplier of coefficient for integral or derivative
X i Independent variable or 27(1/2)

Y i Independent variable or 37(1/2) / 2

6-8

PICOMATH-80 How the Fourier Program Works February 10, 1981

6.3 The Fourier Program

The Fourier program uses an interpolant of the form

s = ug+ v] sin x + uy cos x + vy sin(2x) + uy cos(2x) +...+up cos (mx)

together with sample points x =0, T/n, 2/n, ..., (n=-17n, where
n=2m+l. This form of expression is widely used in science and
engineering for portraying the spectrum or harmonics of a periodic
function. Being canonical and linear in the sines and cosines, it is a
particularly convenient form to use for many purposes. Moreover, for
such equally-spaced cyclic sample points, there is a known closed-form
expression for each element of F~~ defined in section 6.1. This leads
to the general closed-form solution

n
Yg = Euj/n,

3=1
uy = 2 3 S5 cos (23kT/n) / n,
j=1
Ve = 2 § sy sin(23k/n) / n,

3=l

for k=1,2,...,m, where the s. agre the sample ordinates. Arrays u and v
together comprise the Discrete Fourier Transform of array s. Because of
the periodicity of the sine and cosine functions in conjunction with the
uniformly-spaced cyclic sample points, there are Fast Fourier Transform
methods that are faster for large n than using straightforward summation
to evaluate the above formulas. However, these more complicated methods
are not worth the required extra space in this program for adjustable n
as small as 8. MNonetheless, the program does exploit the periodicity to
reduce roundoff error by exactly reducing jk modulo m before computing
the sine and cosine of 2jk%/n in the above formulas. For efficiency
these sines and cosines are precomputed and saved as arrays C and S.
Also for efficiency, this precomputation is done using the recurrence
relations

2 cos x cos [(k-1)x] ~ cos [(k-2)x],
2 cos x sin [(k-1)x] =~ sin [(k-2)x],

cos (k x)
sin (k x)

for k = 2, 3' seoay n-l.

Here is an outline of the program and a dictionary of its
variables:

PICOMATH-80C How the Fourier Program Works February 10, 1981

Outline of the Fourier Program

Lines | Purposes
5-10 i Declare double precision and integer variables, then skip
! around a subroutine and prefatory remarks
20-30 E Subroutine assigning a (usually trig) expression in X to A
40-180 i Prefatory remarks
190 i Initializations
200 i Automatically determine Accuracy(ATN)
210 E Moré initializations, including array dimensioning
220-230 ? Quéry user for choice between Expand, Derivative or Integral
240-250 i More initializations, then terminate line
260-280 i Use recurrences to get sines & cosines of sample abscissas
290-320 i Determine sample ordinates, while accummulating their total
330 i Determine & smooth non—-trig term
340-380 ? Announce answer & display left side of result equation
390-400 i Display non—-trig term if nonzero
440-580 ? Use Discrete Fourier Transform while displaying nonzero terms
590 i Display 0 if no terms were displayed before
600-680 ; Determine largest discrepancy and ordinate magnitude for some
! extra abscissas
690-730 i Display a warning if discrepancy is not relatively small,
! considering Accuracy (ATN)
740-800 i Display a message explaining how to proceed to next example
810 , ; Stop
820-940 i Subroutine for printing a trig term
950-970 i Subroutine for smoothing a coefficient
980 i End

6-10

PICOMATH-80 How the Fourier Program Works February 10, 1981

Dictionary of Variables in Fourier Program

Names I Purposes

A E Most recent ordinate sample -)
array A i Ordinate samples

AS i Response to Expand, Derivative or Integral query
BS$? Leading portion of cofactor of numerical coefficient
array C i Cosines of the sample abscissas

F i PI/4 or Maximum ordinate magnitude

G i Maximum discrepancy magnitude

H i Nontrig coefficient

Js K i Dummy subscripts

M E Maximum allowable angle multiplicity

N E Number of samples

0 iOutput flag: Has a term already been displayed?
PI i Ratio of circumference to diameter of a circle

Q i Accuracy(ATN) " (1/2)

array S i Sines of the sample abscissas

T ; Temporary

array U i Cosine coefficients

array V E Sine coefficients

W i 2 cos (207/n)

X i Independent variable

Y i Candidate rounded coefficient

Z I Temporary

6-11

PICOMATH-80 How the Rational Program Works February 10, 1981

6.4 The Rational Program

The method of undetermined coefficients is not as attractive for
rational interpolation because having some of the undetermined
coefficients in the denominator of the interpolant makes the resulting
equations nonlinear:

UgM+u o™l + .. +u
sk = m¥k m-17k O, for k=1, 2, ..., ntm+2.

The good news is that these equations can be linearized by
multiplying each equation by the denominator of its right side. The bad
news is that the resulting linear equations are singular. However, more
good news is that the equations are also homogeneous so that we are
blessed with not merely one but a whole infinite family of solutions.
The reason for the extra degree of freedom is that given any set of
coefficients that satisfy the above equations, then by cancellation any
nonzero common multiple of these coefficients also satisfies the equa-
tions. Thus, we are free to impose an extra normalization condition
such as insisting that the leading nonzero coefficient of the denomina-
tor be 1. Regrettably, we do not know ahead of time which one is the
leading nonzero coefficient. We can of course first try setting v, to
1, then setting vp-] to 1, etc., until one of these choices enables the
equations to be solved. However, this means that we cannot invert the
coefficient matrix ahead of time in order to speed the rational program.
Moreover, in the arena of inexact arithmetic, roundoff errors often turn
values that should be zero into nonzero values. Thus the program would
have to incorporate judgement about whether or not to regard a candidate
leading coefficient as negligible. The resulting program size and
execution time would be inconsistent with the other PICOMATH programs.

For the above reasons the program employs an utterly different
technique using inverted differences. F.B. Hildebrand describes the
method on pages 494 to 502 of the second edition of his book titled
Introduction to Numerical Analysis, which is published by M“Graw-Hill.
Therefore, only a brief example is presented here to suggest the overall
idea. Those who are familiar with the method of divided differences for
polynomial interpolation will notice great similarity.

Suppose that the right side of the assignment on line 20 of the
program is

8 x 4
2 +

+
4x2-1 4x2 -1

and that our sample abscissas are x = -2, -1, 0, 1, 2. The first step
is to form the following inverted difference table:

6-12

PICOMATH-80 How the Rational Program Works February 10, 1981

gl 12t
AE N
2 i -1 i 0.667 i -1.875 Tﬁ T
3 i 0 i -2 i -0.625 i 0.8 i
4 i 1 i 6 i 0.625 ? 0.8 i
5 i 2 i 5.333 ; 1.875 i 0.8 i

The column labeled "1" is simply the sample ordinates. The columns
to its right are computed as follows: Let d; i denote the entry in
row i, column j. Then !

Xi—xj
d 5 = ' for §>1 and i>=j.
di,3-1 = d4-1,5-1
Readers who seriously want to understand the method should take the time
here to verify the entries manually according to this formula.

If the expression on line 20 of the program is equivalent to a
rational expression, then to within cummulative roundoff error we must
eventually arrive at a column of identical entries. If this happens at
column t, then the continued fraction form of the rational interpolant
is

X - X
1
s = d,1 +
X_XZ
+
d2,2 -
X = Xq
X - X
t
dt-1,t-1 * P
t,t
Thus for our example we have
x = (=2)
s = 1.2 +
x - (-1)
-1.875 + ——m————
0.8

In order to express the interpolant as a ratio of two expanded
polynomials, the program places successive terms over a common
denominator, beginning with the last two terms at the bottom right of
the expression. The process can be summarized by the following

recurrence relation for a sequence of polynomials Py:

6-13

PICOMATH~80 How the Rational Program Works February 10, 1981

Pt = dg,¢;
Py = dg,k Pk+l + (x-xg) Pgy4p, for k=t-1, t-2, ..., 1.

Then P1/po is the desired ratio. We encourage you to verify that this
gives "~ (2°x + 1) / (x -0.5) for our example. Note how the greatest
common divisor is automatically canceled and how the leading nonzero
coefficient of either the numerator or denominator is automatically
normalized to 1, according to whether t is odd or even respectively.
If a displayed answer does not have the proper normalization, then it
is because the unit leading coefficient was replaced by zero for being
negligible compared to other coefficients in the same polynomial.

To save space, only the rightmost inverted difference in each row
is retained at any time, thus permitting a singly-subscripted rather
than double-subscripted array. Similarly, only the two most recently
computed polynomials P, are retained, with polynomial P, overlaying
polynomial Plri+2‘ To save additional space, the abscissas, ordinates,

e

inverted differences and polynomials Py all overlay each other in the
same shared array named A.

Roundoff errors generally destroy exact equality in the column that
should have identical entries. Thus what we want to detect is equality
to "within cumulative roundoff error" in order to decide where to stop
in order to avoid excessive roundoff error, overflow or division by zero
when attempting to compute the next column. Also, to minimize the
expectation of having a sample abscissa near or on a zero of any
denominator in program line 20, the program begins with the transcenden-
tal abscissa 1n 2, then takes successive abscissas 1 less, then 1
more, then 2 less, then 2 more, etc. Moreover, the program may skip any
of these candidate abscissas if an estimated bound on the cumulative
roundoff error in an inverted difference suggests that the inverted
difference might be mostly roundoff noise. The program stops comput-
ing additional inverted differences when 3 successive candidate
abscissas have been rejected for this reason.

The error bound estimates for the inverted differences in array A
are stored in corresponding elements of array E. These estimates are
computed using perturbed abscissas to estimate bounds on the roundoff
errors in the ordinates, then using linearized rules bounding propoga-—
tion of roundoff in subsequent operations.

Although limited to one variable and lacking differentiation or
integration, the less straightforward interpolation technique together
with the array overlays and the self-contained error analysis make the
logic significantly more complicated than for the other PICOMATH prog-
rams. Subject to this warning, here is a brief outline and dictionary
of variables for the rational program:

PICOMATH-~80 How the Rational Program Works February 10, 1981

Outline of the Rational Program

5-10 | Declare double precision and integer variables, then skip
around a subroutine and the prefatory remarks

!
20-30 | Subroutine assigning a rational expression in X to A
40-180 | Prefatory remarks
190 | Initialize some variables
200~-220 | Automatically determine implementation-dependent accuracy
| tolerances and corresponding appropriate dimensions
230 | Display first line of answer announcement
240-360 | Derive up to N-1 successive inverted differences and their
| error estimates until 3 successive candidates are negligible
| or would lead to unacceptable accuracy
370 | Display rest of answer announcement
380-510 | Derive coefficients of numerator and denominator from the
| sample abscissas and the inverted differences
520-570 | Display the numerator, a horizontal bar, then the denominator
580-680 | Determine largest discrepancy and ordinate magnitudes for
| abscissas midway between trial interpolation abscissas
690-720 | Display a warning if the discrepancy is not small relative to
| the largest ordinate magnitude
730-760 | Display a message explaining how to proceed to next example
770 | Stop
780-1040| Subroutine for smoothing then displaying a polynomial, with
I line 790 as a secondary entry point
1050 | End

6-15

PICOMATH-80 How the Rational Program Works February 10, 1981

Dictionary of Variables in the Rational Program

Names ! Purpose

A ; Ordinate sample N o
array A E Ordinate, inverted differences & abscissas; coefficients
C i Maximum discrepancy

D i Implementation accuracy of """

array E i Estimated bounds on absolute errors in array A

F i Maximum coefficient magnitude

G/ I,J,K i Durmy subscripts

H i A(H) = coefficient of Highest degree term

L i A(L) = coefficient of Lowest degree term

M i Index so that final inverted difference has least error
N { Maximum # of terms, including numerator & denominator

0 j Output flag: Has a term already been displayed?

R,U,W,Y ; Multi-purpose temporaries

S i Signed abscissa increment

T E 2.0/3.0, to machine accuracy

X ; Perturbed abscissa or a temporary

Z ? Nominal abscissa

6-16

PICOMATH-80 Adaptation: Precision February 10, 1261

7. INSTALIATION AND ADAPTATION GUIDE

Section 8 contains the PICOMATH program listings, written in BASIC.
The specific dialect of BASIC is ANSI MINIMAL BASIC enhanced by a few
widely used extensions that greatly increase readability, compactness or
accuracy. This section 7 explains how to adapt those generalized
listings to specific implementations of BASIC. Given a moderate
familiarity with BASIC, the explanation should also enable translation
of the programs to another programming language with which the reader is
proficient.

The programs make no use of sophisticated string operations,
matrices, or other advanced features. Only singly-subscripted arrays
the common floating-point arithmetic operations, and the ability to
display literal string constants are required.

7.1 Precision

‘The first line of all four programs declares that variable names
beginning with certain letters are double precision, whereas variable
names beginning with certain other letters are integer. Double
precision increases the allowable problem size beyond which accuracy
becomes intolerable, whereas using integer variables for subscripts and
flags saves space and increases speed slightly. However, the program
does not require double precision or integer variables, so delete the
double precision or integer declarations if the implementation does not
support them. Moreover, many BASIC implementations that offer double
precision do so for the operators "+", "-", "*", and "/", but not for
the operator """, or for the built-in trig functions, or for user-
defined functions. On such implementations double precision usually
yields only modest improvement over single precision in instances where
program line 20 or any other line employs any of the single precision
operations or functions.

In contrast to such declarations or something like them, some
implementations provide a command (named perhaps SIZES) that establishes
the precisions of all floating-point and of all integer variables. If
so, try the greatest allowable precision for floating point, decreasing
it only if this yields insufficient space or unacceptable computing
time. On the other hand, magnitudes of integer variables never exceed
99, so 2 decimal digits or 1 byte is sufficient for them. Note that
single precision is always adequate for variables not mentioned in the
declarations, but greater precision merely increases storage and
execution time slightly.

Rather than declarations, some implementations require a suffix
such as # on all double precision variables, and/or a suffix such as %
on 21l integer variables. If so, delete the declarations and modify the
corresponding variable names throughout the programs. It also may be
necessary to identify integer or double precision constants or functions
by some such technique in program line 20 and throughout the program in
order to avoid degradation of some intermediate results to single preci-
sion.

PICOMATH-80 Adaptation: Assignments February 10, 1981

7.2 Assignments

Some versions of BASIC require each assignment statement to begin
with the word LET. If necessary modify all assignments accordingly. In
contrast, some implementations permit multiple assignments using a
construct such as

variablel = variabley = ... = variable, = expression
or

variable;, variable,, ..., variable, = expression.

If so, there are several obvious opportunities to exploit this feature.

7.3 Printed Messages and Remarks

Although most terminals that display only upper case will
automatically convert to upper case for display, some implementations do
not permit lower-case letters in printed messages or remarks. If
necessary, use upper-case letters only. Also, readability and
convenience is aided by breaking printed messages so that they fit
within the width and height of the smallest terminal display area that
is customarily used. Similarly, readability of the program is aided by
breaking lines within the width of that terminal. Moreover, to prevent
relevant output from scrolling off the screen prematurely, it may be
advisable in some places to use a PRINT and INPUT statement requesting
the user to enter anything in order to continue.

Some BASIC implementation use a comma or something else other than
a semicolon to suppress tabs followed by a new line in PRINT statements.
If necessary, make appropriate changes.

BASIC implementations that do not provide for displaying an
arbitrary INPUT prompt string require the INPUT statements in the
programs to be subdivided into a PRINT statement then an INPUT
statement.

Some versions of BASIC have a single-character raw input statement
(named perhaps GET) that avoids the necessity of pressing an ENTER or
RETURN key after typing an E, D, or I in response to the program query,
thus improving interactivity.

Some versions of BASIC permit the LIST command within a program,
enabling the program to automatically list line 20 for the user before
or after displaying the expanded result.

The three question marks in the remark on line 80 of each program
should be replaced by a phrase identifying the computer and language
dialect, so that anyone copying your implementation will realize that it
is not necessarily in the original form and that it may require modifications
for other computers or language dialects. For example, an appropriate
phrase would be "Applesoft BASIC".

PICOMATE~80 Adaptation: Assignments February 10, 1981

7.4 Array Dimensions and Subscripts

a. Many implementations do not permit adjustable dimensions such as
DIM A(N+N+1), E(N). If necessary, temporarily insert a "PRINT N"
statement immediately before DIM statements to determine the
appropriate constant to use for N, then use that value in the DIM
statements, preceeded by a remark such as "REM The dimension of
array A must be at least N+N+1 and the dimension of array E must be
at least N", in order to forewarn anyone who attempts to transport
your implementation to a different computing environment without
benefit of this manual.

b. Some implementations do not permit a DIM statement -- perhaps
because only one prenamed array, singly-subscripted, is allowed. If
necesssary, delete the DIM statements. Moreover, if only one array
is allowed, change all array references to the name of the one
array, while increasing the subscripts of former references to other
arrays by appropriate amounts so as to pack the arrays end-to—end in
the one array. For example, in the rational program, change E(R)
to AK+N+N+1) in program line 220.

c. Rather than parentheses, some implementation use square brackets "["
and "1" or some other delimiters to delimit subscripts. If
necessary modify all array references accordingly.

d. Some implementations require a separate DIM statement for each
array. If necessary, modify the program accordingly.

e. Some implementations do not permit use of a name as both an array
and a scalar. If necessary, change scalar A to some other name
throughout the programs to avoid conflict with array A.

7.5 Exponentiation

Some implementations use "¥*" or something else other than "™ to
indicate raising to a power. If necessary modify the programs
accordingly. Most PASCAL and "C" language implementations do not pro-
vide an exponentiation operator. In such cases one should define an
exponentiation function for use in program line 20.

Some implementations are unable to raise negative numbers to a
power even though the power is integer. For such implementations, be
sure to display a message warning the user to use repeated
multiplication rather than exponentiation, or to use a specially-written
exponentiation function defined in each program to overcome this
limitation.

7.6 Multiple-statement Lines

a. Some implementations use a separator different than ":" between
multiple statements on a line. If necessary modify the program
accordingly.

PICOMATH-80 Adaptation: Exponentiation February 10, 1981

b.

Some implementations do not permit multiple statements per line. If
necessary enter the statements one per line, with appropriately
interpolated line numbers. For a multiple-statement line of the form

IF condition THEN statement,: statements: ...: statementy,
the corresponding equivalent to use is

IF MOT(condition) THEN line

statementl
statement2

statementn
1ine LR N]

Beware that some versions of BASIC, such as Northstar, permit
multiple. statements per line but treat them differently following
THEN. Such IF statements on such implementations must be rearranged
as illustrated above.

Some implementations permit only a line number as the THEM clause of
an IF statement. However, a statement of the form

IF condition THEN statement
can always be transformed to the equivalent form

IF condition THEN linel
) GOTO liney
line; gstatement
liney ---

7.7 Relational Operators

Some implementations represent the ™not equals" relational operator
" by "><", "#", "4=" or "NE". Also, some implementations
represent the "less than or equals" operator "<=" by "=<" or "LE",
while some implementations represent the “"greater than or eguals"
operator ">=" by "=>" or "GE". If any of these situations prevail,
make appropriate substitutions throughout the programs.

Some implementations do not provide a full set of relational
operators. However, programs can always be rearranged so that the
only necessary relational operator is one of the set {K, >, <=, >=hL
For example, the form

IF expression; <= expressiony THEN linej

can be rewritten as

PICOMATH~-80 Adaptation: Relational Operators February 10, 1981

IF exY;essionl > expressiony THEN linep
GOTO ineqy ;

linez TR

llnel vee

If necessary, modify the programs accordingly.

7.8 lLogical Operators

Some implementations require use of another symbol such as "+", "I,
or "V" for the logical operator named "OR" in the program.
Similarly, some implementations require use of another symbol such
as "*, "&", or "A" for the logical operator named "AND", while some
implementations require use of another symbol such as "-", "9", or
"~® for the logical operator named "NOT". If any of these
situations prevail, make appropriate substitutions throughout the
programs.

Some implementations do not support one or more of the logical
operators named "AND", "OR", or "NOT". However, a line of the form

IF condition; OR conditiony THEN statement

can be replaced by the equivalent pair

IF condition) THEN statement
IF conditiony THEN statement

Similarly, a line of the form

IF condition; AND conditiony THEN statement

can be replaced by the equivalent construct

IF condition; THEN liney
. GOTO line,
line; IF condition, THEN statement
liney «--

Moreover, a line of the form
IF NOT(condition) THEN statement

can be replaced by the equivalent construct
IF condition THEN line

statement
1ine LA R]

7-5

PICOMATH~80 Adaptation: Built-in Functions February 10, 1981

7.9 Built-in Functions

Beware that in BASIC function INT(u) is defined as the largest
integer that does not exceed u. In many other languages and in a few
implementations of BASIC, this is called FLOOR(u), with INT(u) or FIX(u)
or TRUNC(u) being reserved for integer truncation, which is different
for negative arguments. (Truncation always rounds toward zero.) If an
appropriate FLOOR-type INT is not available, then instances of INT in
the programs can be simulated as follows:

1. Isolate each usage of INT as an assignment of the form
y = INT(x)
2. Replace each such assignment by the pair of statements

y = TRUNC(x)
IF x<0 AMD y<>x THEN y=y-1

Some implementations do not provide a built-in SGN function, which
is used in the rational program. However, the argument is never zero
there, permitting SGN(Z) to be safely defined there as ABS(Z)/Z.

As in most BASIC implementations, LOG denotes the natural logarithm
and SQR denotes the square root. These may be named differently in some
implementations.

Most BASIC implementations do not provide built-in secant, cosecant
and cotangent functions, and most BASIC implementations limit user-
defined functions to one letter following "FN". Consequently, the
corresponding definitions in the trigonometric program may have to be
changed to names such as FNME for sEc, FNS for cSc and FNO for cOt.

The MOD operator in the Fourier program is named REM for REMainder
in some implementations. Alternatively, MOD or REM is often provided as
a function rather than an operator. If no such facility is available,
an appropriate function MOD(u,v) can be defined for this program where u
and v are nonnegative as u - INT(u/v), with INT being either a FLOOR or
TRUNC variant, as described at the beginning of this subsection.

7.10 String Variables and Comparisons

All but the rational program make trivial use of a string variable
named A$ to capture the users choice between Expansion, Differentiation,
and Integration. Some BASIC implementations do not support string
variables or do not permit equality comparisons for them. In such
cases, a trick that often works is to initialize the numeric variables
E, D, and I to values such as 0, 1, and -1 respectively. Then when the
user types one of these letters he is actually providing its numerical
value, which can be captured with another numeric variable then tested.

PICOMATH-80 ‘ Adaptation: String Variables February 10, 1981

(Naturally, in instances where E, D or I are already employed for other
purposes, it is necessary to rename variables in order to free E, D and
I for this purpose.) If this technique doesn't work, it is always
possible to ask the user to directly enter ~1, 0 or 1 for integration,
expansion and differentiation respectively.

Three of the programs make use of a string variable named B$ to
hold all or part of the cofactor to be displayed with each coefficient.
However, if necessary the same effect can be accomplished somewhat
awkwardly using only string constants by displaying this portion of the
cofactor after returning from the coefficient display subroutine.

Some implementations use single rather than double guotes to
delimit string constants, necessitating corresponding changes in the
programs. :

Some implementations require string delimiters around input strings
even though they are an entire line. If so, the prompt message for
choosing between Expansion, Integration or Differentiation should also
include the delimiters.

Some implementations implement strings as arrays of single
characters, necessitating corresponding minor changes to the programs.

7.11 Space Requirements

For many microcomputer BASIC implementations that permit multiple
statements per line, the Fourier, rational, polynomial and trigonometric
programs require about 3400, 3800, 4100 and 5200 bytes of storage
respectively, including full PRINT messages, remarks, indentation and
spacing. Various implementations require somewhat more or less than
these values. Thus some space-saving modifications may be necessary for
one or more of the programs on programmable calculators or on the very
tiniest computers. These modifications reduce the readability, auto-
tutorial level, or robustness of the program, so first try an unabridged
adaptation to determine how little, if any, needs to be sacrificed.
(Many BASIC implementations provide a command named something such as
FREE, MEMORY or PGMSIZE that helps determine space availability.) We
may be judged by your adaptation of our software, so we ask your co-~
operation in changing the program as little as possible, employing each
of the following technigues only after the preceeding ones have been
fully exploited, yet more savings are needed.

a. For iﬁplementations having a built-in MAX function that returns the
larger of its two arguments, there are many statements of the form

IF expression) > variable; THEN variablej = expressionj
that can be converted to the more compact equivalent:
variable; = MAX (variablej, expression;) -

b. Some BASICs don't require an END statement, saving a little space.

PICOMATH-80 Adaptation: Space Requirements February 10, 1981

C.

If the implementation is more nearly a pure interpreter than a pure
compiler, then renumbering the lines from 1 with an increment of 1
may save space. However, this makes later insertions more awkward.
Consequently, if your implementation does not provide an automatic
renumbering facility, then experiment first using a small segment of

the program to determine if there are any such space savings before
going to the trouble and hazard of changing our line numbers.

If the implementation is more nearly a pure interpreter than a pure
compiler, various syntactic abbreviations may save space in the
loaded program. For example, the following table indicates some
commonly allowed BASIC abbreviations:

Construct] Abbreviation
T:HEI\‘! i "'" or "o or IIT“
PRIM l "?" or "!ll Or "P"
REI’E " min Or ll!"
INT(u/v) I u\v or v\u
NEXT variable | "NEXT" or "N"
NEXT variable; | NEXT variablej, variablep
NEXT variabley |

Similarly, reduction of the indentation amounts may save space for
some interpreters. Also, we have not exploited the opportunities
for multiple statements per line where to do so would obscure the
program structure, and many BASIC or FORTRAM implementations even
permit all spaces to be omitted, yielding an incredibly ugly
program. (Please don't do this unless absolutely necessary.)

It is relatively straightforward to delete the integration and/or
differentiation facilities from any of the three programs that
provide it. For pre-calculus students these facilities are merely a
distraction anyway, which teachers may wish to disable with a
removable GOTO bypassing the query, accompanied by a remark
explaining how to restore the program to full power.

The remarks and printed messages can be abbreviated slightly without
becoming too terse for comprehension, and the displayed instructions
are more appropriate as comments in batch-oriented implementations
that do not accept input from a terminal. However, we absolutely
insist that at least The Soft Warehouse name, address, copyright
notice, and conditional duplication permission be included in each

program.

At the expense of forcing users to remember various different
oddball line numbers in place of "line 20", the initial GOTO can be
deleted if the subroutine beginning at line 20 is moved to just
before the end of the prograns.

7-8

PICOHMATH-8C Adaptation: Other Lenguages February 10, 1981

After becoming familiar with the programs in their original form,
experienced programmers with computers having sufficient memory may wish
to merge the polynomial program with the rational program and merge the
trigonometric program with the Fourier program, or even to merge all
four programs into one. The most straightforward technique is to add
say 2000 to all of the line numbers of the second program, etc. then
essentially append the programs end to end, with a few obvious
deletions such as internal END statements. One can then choose the
second program for example by entering RUN 2010 rather than merely RUN.
Better yet, the selection can be menu driven. However, there are ob-
vious opportunities to share portions of the programs, perhaps at the
expense of renaming some variables. More ambitiously, one can arrange
so that the program uses a single RUN command but tries fitting the
formula on line 20 with successive candidates until one category results
in a sufficiently small discrepancy. However, these are not minor
adaptations, and full exploitation of the opportunities for sharing
sections of code requires an understanding of section 6. Consequently,
we strongly recommend against these adaptations until after the indivi-
dual programs are successfully installed and much spare time is
available.

7.12 Other Languages

PICOMATH can be adapted to most computer programming languages.
However, the programs are most pleasant to use in an environment that
permits a program to be modified then rerun in less than 1 minute of
elapsed time. For most computing environments this suggests languages
such as APL, PASIC, FORTH, LISP or muSIMP rather than languages such as
C, FORTRAN, PASCAL or PL/I. A user of PICOMATH should be relatively
indifferent to the choice of implementation language except insofar as
it affects interactivity and precision. Thus, since PICOMATH is used
many times once implemented, it is appropriate to select from the
available implementation languages on the basis of the user's needs more
than the implementor's comfort of familiarity.

Some language implementations offer an EXECute statement or its
equivalent, which permits a character-string to be executed as if it
were a program statement. This facility can be used to make PICOMATH
more interactive as follows: Rather than having the expression to be
simplified be on program line 20, a character string of the form

"A = expression"

is input interactively from the terminal as the value of a string
variable named perhaps C$. Then, each instance of "GOSUB 20" is
replaced by "EXEC C$" to give the same effect without requiring any
program modification by the user. This enables the STOP statement to be
replaced with a GOTO statement causing the program to repeatedly loop
back to the beginning for additional input examples until interrupted
manually by striking the appropriate break key on the terminal. This
further permits the use of abbreviated prompt strings after every
interaction cycle that does not produce serious discrepancy.

7-9

PICOMATH-80 Testing February 10, 1981

Other languages and some BASIC implementations provide an error
trap facility named perhaps ON ERROR or ERRORSET that permits graceful
recovery from overflow, underflow and zerodivide. If such a facility is
present, perhaps it can be used to proceed from the point of difficulty
using the most reasonable value, after printing a more specifically
helpful message than would otherwise occur.

7.13 Testing

Besides the examples in this manual, good test cases are the
following:

Polynomial:_ x6, x5; x4, x3y, x2y2, xy3, v%; x3, 2y, xy2, y3; x2,
XY! XZ’ y r yzl Z ; X, y, Z' 1, 0' "l.

Rational: xm, xm=1 %, 1,0, -1, x71, x2, ..., xN; where
m and n are the exponent limits displayed in the epilogue message.

Fourier: -1, 0, 1, cos x, sin x, cos(2x), sin(2x), cosS(3%), .eer
cos(nx), sin(nx); where n is the multiplicity limit displayed in the
epilogue message.

Trigonometric: -1, 0, 1, tan(x)*sec(x), cot(x)*csc(x), sec?x,
cot x, tan x, sec %, c¢sc x, sin y, cosy, cosx, cos(x)*sin(y),
cos(x)*cos(y), sinx, sin(x)*sin(y), sin(x)*cos(y), sin(x)*cos(x),
sin<y,

7-10

PICOMATH-50 February 10, 1981

8.1 Rational Program

10 GOTO 190

20 A=(2*%¥X—(3*X+4) / (X~2))/ (X=(10*X+4) / (2*X+3))

30 RETURN

40 PFEM PATIONAL program of the PICOMATH-80 demonstration symbolic
50 REM math package. Copyright (c) 5/20/80 and trademark by

60 REM The Soft Warehouse, Box 11174, Honolulu, Hawaii 96828.

70 REM

80 REM Adapted with permission for ??? language dialect.

90 REM Permission to install PICOMATH-80 or a translation of it on

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

REM additional machines is hereby granted for a royalty of $2
REM each, payable to The Soft Warehouse, provided the remarks and
REM printed messages are all included, modified only as necessary.
REM The reference manual contains more usage information, the latest
REM unabridged program listings, an adaptation guide, and an explanation
REM of how PICOMATH works. This manual and machine-readable versions
REM customized for many popular machines are available at modest cost
REM from some hardware manufacturers, most computer stores, and
REM Programma International at 2908 N. Naomi St., Burbank, CA 91504.
7=10G(2): X=Z: T=2.0/3.0: U=T"3: N=0: K=0: D=1: S=1: M=l
N=N+1l: D=D/13: IF U<>(D+T)"3 THEN 200
DIM A(NHN+1), E(N): A(L)=0
D=9*D/8: IF U=(D+T)"3 THEN 220
PRINT "Expanded on a common denominator, reduced to lowest terms,”
K=K+1: IF K>N THEN 370
J=3
J=J-1: IF J<0 THEN 370
X=Z: GOSUB 20: R=A
X=7*(1+D) : GOSUB 20: W=ARS(A-R)
X=2*(1-D): GOSUB 20: Y=ABS(A-R): IF Y>W THEN W=Y
¥Y=Z: 7Z=2-S: S=-S-SGM(S): I=1: GOTO 350
R=R-A(I): U=ABS(R): W=WHE(I)+U*D: IF 9*=U THEN 260
X=Y-A(N+I) : R=X/R: T=RBS(R): W=(T+ABS(X)/U) *D+*T/U
IF S*%>=T THEN 260
I=I+1
IF I<K THEN 310
M=K: A(K)=R: A(K+N)=Y: E(K)=W: GOTO 240
PRINT " the formula on line 20 is approximately A ="
PRINT: A(N+M)=1: I=M: K=M-1: GOTO 510
I=I-1: AQHI) = AK)*A(I+1) - AQHK) *A(QHI+)
IF I=M-1 THEN 440
FOR J=I+1 TO M-1
AQHT) = AQHI) + AK) *A(J+1) - A(NHK) *A(N+J+1)
NEXT J
IF K=1 THEN 540
A(I) = A(R=1)*A(N+I) - A(MN+K-1) *A(I+]1)
IF I=M-1 THEN 500
FOR J=I+1 TC M-1
A(J) = A(J) + A(R-1)*A(N+T) - A(NHK-1) *A(J+1)
NEXT J
AM)=AM)+A(K~1) : K=K-2
IF K>0 THEN 390
I=I: B=M: GOSUB 780

PICOMATH-80 Rational Program Listing February 10, 1981

530 I~MN+I: B=M#M: GOTO 560

540 I=M+I: B=M+M: GOSUB 780

550 I=I+1: H=M

560 PRINT * "
570 GOSUR 790

580 C=0: R=0: S=SGM(Z): X=7~S/2: PRINT

590 FOR I=1 TO M

600 W=0: Z=0: GOSUR 20: IF ABS(A)>R THEN R=ABS(A)

610 FOR G=K TO J STEP -1

620 W=WFEHA(G)

630 NEXT G

640 FOR GFH TO L STEP -1

650 2=Z2*X+A(G)

660 NEXT G

670 X=X-S: W=RBS(A-W/Z): IF W>C THEN C=W
680 NEXT I

690 IF 9*C<=SQR(SQOR(D))*R THEN 730

700 PRINT "Sampling suggests significant discrepancy. Perhaps line 20"
710 PRINT " is irrational, of excessive degree, or too sensitive to"
720 PRINT " 1limitations of this BASIC arithmetic."

730 PRINT "For comparison, list line 20. If desired, alter it to assign"
740 PRINT " A any expression that simplifies to a polynomial in ¥ of"
750 PRINT " degree <=";INT(N/2);"divided by a polynomial in X of degree <=";
760 PRINT INT((N-1)/2);" Then rerun but do NOT save altered pregram."
770 STOP

780 J=L: K=H

790 F=0: O=1

800 FOR G=L. TO H

810 Y=ABS(A(G)) : IF Y>F THEN F=Y

820 NEXT G

830 FOR G=L TO H

840 C=INT(A(G)+.5) : X=ABS(A(G)~C): IF X<.01 AND 99*X<F THEN A(G)=C
850 NEXT G

860 IF H=IL THEN 1000

870 FOR G=H TO L+l STEP -1

880 R=A(G): IF R=0 THEN 990

890 IF O=0 THEN 930

500 IF R=-1 THEN PRINT "-";

910 IF ABS(R)=1 THEN 960

920 GOTO 950

930 IF R<O THEN PRINT " - ";: R=-R: GOTO 950

940 PRINT " + ";

950 IF R<>1 THEN PRINT R;

960 PRINT " X ";

970 IF G>I+1 THEN PRINT """; G-L;

980 ©=0

990 MEXT G

1000 IF C=1 THEN PRINT A(L): RETURN

1010 IF A(L)>0 THEM PRINT " + "; A(L)

1020 IF A(L)<0 THEN PRINT " - "; -A(L)

1030 IF A(L)=0 THEN PRINT

1040 RETURM

1050 END

PICOMATH-80 February 10, 1981

7.2 Polynomial Program

10 GOTO 190

20 A = (X+1)76 + (X+Y+1) "4 + (X+Y+2+1) * (X+Y+2-1)

30 RETURN

40 REM POLYNOMIAL program of the PICOMATH-80 demonstration symbolic

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

REM math package. Copyright (c¢) 5/20/80 and trademark by

REM The Soft Warehouse, Box 11174, Honolulu, Hawaii 96828,

REM

REM Adapted with permission for ??? language dialect.

REM Permission to install PICOMATH~-80 or a translation of it on

REM additional machines is hereby granted for a royalty of $2
REM each, payable to The Soft Warehouse, provided the remarks and
REM printed messages are all included, modified only as necessary.
REM The reference manual contains more usage information, the latest
REM unabridged program listings, an adapatation guide, and an explanation
REM of how PICOMATH works. This manual and machine-readable versions
REM customized for many popular machines are available at modest cost
REM from some hardware manufacturers, most computer stores, and
REM Programma International, 2908 N. Naomi St., Burbank, CA 91504.
DIM A(26): O=l: N=0: Y=0: Z=0
PRINT "Enter E for Expansion, D for Derivative with respect to X,"
INPUT; " or I for Integral with respect to X:", A$: PRINT

IF A$="E" THEN PRINT "Approximately, A = ";: GOTO 260

IF AS="D" THEN PRINT "Approximately, da/dX = ";: GOTO 260

IF ASOM"IM™ THEN 200

PRINT "Approximately, S A dX = ";
X=3: GOSUB 20: B=A
X=-3: GOSUB 20: C=B-A: B=B+A

=2: GOSUB 20: D=A
X=-2: GOSUB 20: E=A
X=1: GOSUB 20: F=A
X=-1: GOSUBR 20: G=A
X=0: GOSUB 20: H=A
V=6: BS$="": A=(((B/6~D-E)/5+(F+G)/2)/2-H/3)/12: GOSUB 820
V=5: BA=((C/4+E-D)/5+(F-G)/4)/12: GOSUB 820
V=4: A=((D+E-(B/3+13*(F4G)) /4) /2+1/3*7)/6: GOSUB 820

Y=2: GOSUB 20: I=A
Y=-2: GOSUB 20: J=A

Y=1: GOSUB 20: K=A
Y=-1: GOSUB 20: IL=A
X=-2: GOSUB 20: M=A

X=1: GOSUB 20: P=A
¥Y=1: GOSUB 20: (=A
¥=-1: GOSUB 20: R=A
Y=-2: GOSUB 20: S=A
¥Y=-1: GOSUB 20: T=A
V=3: B$="Y": A=((F-E+M-P)/3+G-E+L~T)/2: GOSUB 820

B$="": A=((13*(G-F)-C)/8+D-E)/6: GOSUB 820

=2: B$="Y"2": A=((P+QO+R+T)/2-F-G-K-L)/2+H: GOSUB 820
B$="Y": A=((Q-P+R-T)/2+L-K)/2: GOSUR 820
Bs$="": A=((B/9-(D+E)/2*3)/5~-H/9*49+3* (F+G)) /4: GOSUB 820
V=1l: B$="Y"3": A=((K-J+S-R)/3+G-H+L~T)/2: GOSUB 820
B$="Y"2": A=((P-R+C-T)/2+G~F)/2: GOSUB 820

8-3

PICOMATH-80 Polynomial program listing February 10, 1981

530 B$="Y": A=((5*T4+Q)/2+(E-F+J~-K~M~S-(P+R)/2)/3)/2-G+H-L: GOSUB 820

540 E=E-D: Z=-1: Y=0: GOSUB 20: D=A

550 X=0: GOSUB 20: B=A

560 B$="2": A=D-B+H~G: GOSUB 820

570 B$="": A=((3*E+C/3)/5+3* (F-G))/4: GOSUB 820

580 v=0: B$="Y"4": A=(((I-+J)/4-K-L)/3+H/2)/2: GOSUB 820

590 B$="Y"3": A=((I-J)/2+L~K)/6: GOSUB 820

600 B$="Y"2": A=(2* (K+L)-(I+J)/8)/3-H/4*5: GOSUB 820

610 Z=1: GOSUB 20: C=A: Y=-1: GOSUB 20

620 BS$="YZ": A=L-H+C-A: GOSUB 820

630 BS$="Y": A=((J-I)/4+2*(K-L))/3: GOSUB 820

640 Bs$="2"2": A=(C+B)/2-H: GOSUB 820

650 B$="2": A=(C-B)/2: GOSUB 820

660 B$="": A=H: GOSUB 820

670 IF O=1 THEN PRINT A: GOTO 690

680 PRINT

690 F=0: G=0: X=ATN(1): Y=EXP(1)/5: Z=LOG(2): GOSUB 1000

700 X=-X: GOSUB 1000: ¥Y=-Y: GOSUB 1000: Z=-Z: GOSUB 1000

710 F=F*F: G=G*G+F: IF F=0 THEN 770

720 IF (G/F)"3=1 THEN 770

730 PRINT "sampling suggests significant discrepancy. Perhaps line 20 is"
740 PRINT " not equivalent to a polynomial in X, ¥ and Z, or the polynomial"
750 PRINT " is of excessive degree or the expression is too sensitive”
760 PRINT " to limitations of this BASIC arithmetic."

770 PRINT "For comparison, list line 20. If desired, alter it to assign to"
780 PRINT " A any expression equivalent to an expanded polynomial in X, Y"
790 PRINT " and Z. The total degree of any expanded term containing X, ¥Y"
800 PRINT " and Z should not exceed 6, 4 and 2 respectively."

810 STOP

820 GOSUB 980: N=N+l: A(N)=A

830 W=V: IF AS$="E" THEN 870

840 IF AS="I" THEN W=V+l: A=A/V: GOTO 860

850 A=V*A: W=W-1

860 GOSUB 980

870 IF A=0 THEN RETURM

880 IF O=0 THEN 910

890 IF A=-1 THEN PRINT "-";: A=-A

900 GOTO 930

910 IF A<C THEN PRINT " - ";: A=—-A: GOTO 930

920 PRINT " + ";

830 IF A<l OR W=0 AMD BS$="" THEN PRINT A;

940 IF W>0 THEN PRINT "X";

950 IF W>1 THEN PRINT """;W;

960 PRINT BS;

970 O=0: RETURN

980 U=INT(A+.5): IF ABS(U-A)<.01 THEN A=U

990 RETURN

1000 GOSUB 20: IF ABS(A)>F THEN F=ABS(A)

1010 wW=((A(14) *Y+A(9) *X+A(15)) *Y+(A(6) *X+A(10)) *X+A(16)) *Y+ ((A(4) *X+A(7)) *%+A(11)) *X
1020 W=(WHA(L18)) *Y+(((((A(1) *X+A(2)) *X+A(3)) *X+A(5)) *X+A(8)) *X+A(13)) *X
1030 VE=ABS (WA (21)+(A(12) *X+A(17) *Y+A(19) *Z+A(20)) *Z-A)

1040 IF W>G THEN G=W

1050 RETURM

1060 EMD

PICOMATH-80 February 10, 1981

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

7.3 Trigonometric Program

GOTO 190

A = SIN(X-Y+PI/2) + COS(2*X) - FNCOT(X) *FNSEC (X)/FNCSC(X)

RETURN

REM TRIGONOMETRIC program of the PICOMATH-80 demonstration

REM symbolic math package. Copyright (c) 5/18/80 and trademark
REM by The Soft Warehouse, Box 11174, Honolulu, Hawaii 96828.

REM Adapted with permission for ??? language dialect.

REM Permission to install PICOMATH-80 or a translation of it on

REM additional machines is hereby granted for a royalty of $2

REM each, payable to The Soft Warehouse, provided the remarks and
REM printed messages are all included, modified only as necessary.
REM The reference manual contains more usage information, the latest
REM unabridged program listings, an adaptation guide, and an explanation
REM of how PICOMATH works. This manual and machine-readable versions
REM customized for many popular machines are available at modest cost
REM from some hardware manufacturers, most computer stores, and

REM Programma International at 2908 N. MNaomi St., Burbank, CA 91504.
DIM A(18): P=ATN(1l): PI=4*P: V=1l: O=1: N=0: Y=0

DEF FNSEC(X)=1/C0S(X)

210 DEF FNCSC(X)=1/SIN(X)

220

DEF FHNCOT (X)=1/TAN(X)

230 PRINT "Enter E for Expand, D for Derivative with respect to X,"
240 INPUT;" or I for Integral with respect to X:", AS

250 IF AS<O"E"™ AMD AS>"D"™ AND AS<O"IM™ THEN 230

260 PRINT: PRINT "Approximately, line 20 is eqguivalent to "

270 IF As="E" THEN PRINT "A = ";

280
290

IF A$="D" THEN PRINT "dA/dX = ";
IF A$="I" THEN PRINT "S A dX =";

300 X=P: GOSUB 20: D=A

310 X=-X: GOSUB 20: E=D-A: D=D+A
320 Y=P: GOSUB 20: S=A

330 Y=-Y: GOSUB 20: O=A

340 X=-X: GOSUB 20: T=S-A: S=S+A

350

¥=-Y: GOSUB 20: R=Q-A: O=0+A

360 X=3*¥: Y=Y+Y: GOSUB 20: W=A
370 X=-¥: Y=-Y: GOSUB 20: Z=W-A: W=VHA
380 y=0: GOSUB 20: K=A

390
400
410

X==X: GOSUB 20: J=K+A: K=A-K
X=2*PI/3: GOSUB 20: B=A
¥=-X: GOSUB 20: I=H-A: HE=H+A

420 X=X/2: GOSUB 20: G=A

430

X=-X: GOSUB 20: F=G+A: G=A-G

440 ¥X=%/2: GOSUB 20: B=A

450 X=-X: GOSUB 20: C=B-A: B=B+A

460 X=5*X: GOSUB 20: M=A

470 X=-X: GOSUB 20: L~=M+A: M=A-M

480 X=SQR(2): Y=SQR(3)/2: P=X-2+X

490 B$="TAN X SEC X": IF A$="I" THEN B$="SEC X"

500
510
520

IF A$="D" THEN B$="(2 SEC™3 X - SEC X)"
D=3% ((C+M) /2- (E+K) *X+(G+I) *Y) /16: GOSUB 1140)
BS$="COT ¥ CSC X": IF AS$="D" THEM B$="(CSC X - 2 CSC"3 x)"

8-5

PICOMATH-80 Trigonometric Program Listing February 10, 1981

530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

IF AS="I" THEN B$="CSC X": V=-1

A=3* ((F-H) /2+(J-D) *X+(B-L) *Y) /16: GOSUB 1140
BS$="SEC"2 X": V=1: IF AS$="I" THEN BS$="TAN X"
IF A$="D" THEN V=2: BS="TAN X SEC"2 X"

A=3* ((B+F+H+L)/2-D~J) /8: GOSUB 1140

B$="COT X": IF AS="I" THEN B$="LM SIN X"

IF AS$="D" THEN BS$="CSC"2 X": V=-1

A= (Y*(G~-I+3*(C-M))+3*(K-E))/8: GOSUB 1140
BS="TAN X": V=1: IF A$="D" THEN B$="SEC"2 X"
IF AS="I" THEN V=-1: BS$="LN COS X"

A= (Y* (C-M+3*(G-1)) +3*(K~-E))} /8: GOSUR 1140
B$="SEC X": V=1: IF A$="D" THEN B$="TAN X SEC X"
IF AS$="1" THEN B$="IN TAN(X/2+PI/4)"

B=(9% (F-H) /243* (J-D) *¥+(B~L) *Y) /16: GOSUP 1140
BS$="CSC X": IF AS$="I" THEN BS$="LN TAN(X/2)"

IF AS="D" THEN V=-1l: B$="COT X CSC X"

A=(9% (C+M) /2-3* (E+K) *X+(G+I) *Y)/16: GOSUR 1140
B$="": IF AS$="D" THEN V=0

IF AS="I1" THEN BS$="X"

A= (3% (B+L) =F-H) /8+(C~JHD /4+(S-X*D) /P/2: GOSUR 1140
BS$="SIN Y": IF AS$="I" THEN B$="X SIN Y"

A= ((R-K+2) /24 (E*X+T) /P) /2: GOSUB 1140

B$="COS Y": IF AS$="I" THEN B$="X COS Y"

A= ((J-QO-W) /2+(D*X-S) /P) /2: GOSUB 1140

BS$="SIN X": V=1: IF AS="E" THEN B$="COS X"

IF A$="D" THEN V=-1

A= (3% (H~-F) / 2+ (L~B) *Y) / 2+ (((3*X~6) *J+X*Q+ (X~-2) * (W-S)) /2+(1~P) *D) /P

GOSUB 1140
B$="SIN X SIN Y": IF AS="E" THEMN B$="COS X SIN Y"
A=(K-7) *%/ 4~ (X* (R~T) +2* (E+T)) /P/2: GOSUB 1140
B$="SIN X COS Y": IF AS="E" THEN B$="COS X COS Y"
A= (D=X*Q/ 2+ (X=2) * (J+S-W) /2) /P: GOSUB 1140
BS$="SIN X": IF AS$O"E" THEN V=-V: BS$="COS X"
D=X*R-E- (3% (C+M) /2+Y*(G+I)) /2~ (R+T) /P: GOSUB 1140
B$="COS X SIN Y": IF AS$="E" THEM B$="SIN X SIN Y"
A=(Q-8)/2: GOSUB 1140
B$="COS X COS ¥Y": IF AS$="E" THEM B$="SIN X COS Y"
A=(E+E+R+T) /P: GOSUR 1140
BS$="SIN X COS X": V=1: IF AS$="D" THEN B$="(1 - 2 SIN"2 X)"
IF A$="I" THEN V=1/2: B$="SIN"2 X"
B=2* (E-K) +Y* (I-G+M~C) : GOSUB 1140
B$="SIN"2 X": IF AS$="I" THEN B$="(X - SIN X COS X)"
IF AS$="D" THEN V=2: BS$="SIN X COS X"
A=2% (D+J) —(3* (B+L) +F+H) /2: GOSUB 1140

IF O=1 THEN PRINT A;

=0: G=0: ¥=EXP(1l): Y=LOG(2): GOSUR 1220
X=-1: GOSUB 1220

1000 y=-1: GOSUB 1220

1010 X=1: GOSUB 1220

1020 P=F*F: H=G*G+F: PRINT: IF F=0 THEM 1070

1030 IF G<.0001 OR ATN(H/F)=ATN(1) THEN 1070

1040 PRINT "Sampling suggests significant discrepancy. Perhaps line 20"
1050 PRINT " is not eguivalent to an allowable expression, or line 20"
1060 PRINT " is too sensitive to limitations of this BASIC arithmetic."
1070 PRINT "For comparison, list line 20. If desired, alter it to assign"

8-%

PICOMATE-80 Trigonometric Program Listing February 10, 1981

1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

PRINT " to A any expression equivalent to a linear combination of the"
PRINT " terms: TAN X SEC X, COT X CSC X, SEC"2 X, COT X, TAM X,"
PRINT " SEC X, CSC X, 1, SIN Y, COS Y, COS X, COS X SIN Y,"

PRINT " COS X COS Y, SIN X, SIN X SIN Y, SIN X COS Y, SIN X COS X,"
PRINT " and SIN™2 X. Then, reRUN but do MOT save altered program.”
STOP

GOSUB 1200: N=MN+l: A(N)=A: A=A*V: GOSUB 1200: IF A=0 THEN RETURNM

IF O=1 AND A>0 THEN 1180

IF A0 THEN PRINT " - ";: A=-A: GOTO 1180

PRINT " + ll:

IF A<>1 OR BS$="" THEN PRINT A;

PRINT B$;: O=0: RETURN

U=INT(A+.5) : IF ABS(U-A)<.001 THEN A=U

RETURNM

GOSUB 20: IF ABS(A)>F THEN F=ABS(A)

C=COS(X): S=SIN(X): T=TAN(X): U=SIN(Y): V=COS(Y)

W= (A1) *T+A (3) /C+A(6)) /C+(A(2) /THA(T)) /S+A(4) /THA(5) *T+A(9) *U

W=+ (A(14) +A(15) *U+A (16) *VH+A(17) *C+A(18) *S) *S+A(10) *V

VEARS (WA (8) + (A (11) +A(12) *U+A(13) *V) *C-R)

IF W>G THEN G=W

RETURN

END

PICOMATH-E0 February 10, 1981

7.4 Fourier Program

10 GOTO 190

20 2=(COS(X)+SIN(X)) "8

30 RETURN

40 REM FOURIER program of the PICOMATH-80 demonstration

50 REM synbolic math package. Copyright (c) 5/20/80 and trademark

60 REM by The Soft Warehouse, Box 11174, Honolulu, Hawaii 96828.

70 REM

80 REM Adapted with permission for ??? language dialect.

90 REM Permission to install PICOMATH-80 or a translation of it on

100 REM additional machines is hereby granted for a royalty of $2

110 REM each, payable to The Soft Warehouse, provided the remarks and
120 REM printed messages are all included, modified only as necessary.
130 REM The reference manual contains more usage information, the latest
140 REM unabridged program listings, an adaptation guide, and an explanation
150 REM of how PICOMATH works. This manual and machine~readable versions
160 REM customized for many popular machines are available at modest cost
170 REM from some hardware manufacturers, most computer stores, and

180 REM Programma International at 2908 N. MNaomi St., Burbank, CA 91504.
190 FP=ATN(1l): PI=4*F: Q=1

200 Q=0Q/9: T=ATN(1+Q): IF T<>F THEN 200

210 M=8: MN=M+M+1: DIM A(N) ,C(N) ,S(N),UM) , V(1D

220 INPUT;"Enter E for Expand, D for Derivative or I for Integral:",A$
230 IF ASO"E" AND ASO"D" AND ASO"IM THEN 220

240 Q=8QR(Q): T=0: F=0: O=0: S(1)=0: C(1)=1

250 W=2*PI/N: S(2)=SIN(W) : C(2)=COS(W): W=2*C(2): PRINT

260 FOR K=3 TO N

270 CR)=*C(R-1)-C(K~-2) : S(R)=W*S(K-1)-S(K-2)

280 NEXT K

290 FOR K=1 TO N

300 X=2*(K-1)*PI/M: GOSUB 20: A(K)=A

310 T=T4+A: X=ABS(A): IF X>F THEN F=X

320 MEXT K

330 T=T/N: GOSUB 950: H=T

340 PRINT "When the formula on line 20 is approximately transformed to a"
350 PRINT " linear trigonometric polynomial,"

360 IF A$="D" THEN PRINT "dA/dX = ";: GOTO 440

370 IF AS$="I" THEN PRINT "S A d&X = ";: GOTO 400

380 PRINT "A = ";: IF T=0 THEN 440

390 O=1: PRINT T;: GOTO 440

400 IF T=0 THEN 440

410 O=1: IF T=-1 THEN T=l: PRINT "-";

420 IF T<>1 THEN PRINT T;

430 PRINT "X";

440 K=1

450 T=0

460 FOR J=1 TO N

470 T="T+ A(J) * C(L+((K*J-K)MOD M)

480 NEXT J

490 T=2*T/N: B$="SIN(": IF A$="E" THEN B$="COS("

500 GOSUB 950: U(K)=T: IF A$="D" THEN T=-T

510 GOSUB 820: T=0

520 FCR J=1 TO N

PICOMATH-80 Fourier Program Listing February 10, 1981

530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
200
910
920
930
940
950
960
970
280

T =T+ A(J) * S(1+((K*J-K)MOD N))
MEXT J
T=2*T/N: B$="COS(": IF A$="E" THEN BS$="SIN("
GOSUB 650: V(R)=T: IF AS$="I" THEN T=-T
GOSUB 820
K=K+1l: IF K<=M THEN 450
IF O=0 THEN PRINT O;
F=0: G=0: X=EXP(1l): PRINT
FOR K=1 TO 5

X=X/2: GOSUB 20: T=H

FOR J=1 TO M

T = T + U(J)*COS(J*X) + V(J)*SIN(JI*X)

NEXT J

Z=ABS(A) : IF Z>F THEN F=%

Z=ABS(A-T): IF Z>G THEN G=%
MEXT K
IF G<=9*Q*F THEN 740
PRINT "sampling suggests significant discrepancy. Perhaps line 20"
PRINT " is not equivalent to a trigonometric polynomial in X,"
PRINT " or it requires too large of a multiplicity, or it is"
PRINT " too sensitive to limitations of this BASIC arithlmetic."
PRINT "For comparison, list line 20. If desired, alter it to assign"
PRINT " A any expression equivalent to a polynomial in sines and"
PRINT " cosines of radian angles of the form n*X+c, where n is any"
PRINT " integer of magnitude <="; M; "and c is a constant, which may"
PRINT " involve the variable PI, representing the ratio of
PRINT " circumference to diameter of a circle. Then reRUN but do"
PRINT " NOT save altered program.”
SToP
IF A$="D" THEN T=T*K
IF A$="I" THEN T=T/K
GOSUB 950
IF T=0 THEN RETURMN
IF O=0 THEN 930
IF ™0 THEN PRINT " + ";
IF T<0 THEN T=-T: PRINT " - ";
IF T<>1 THEN PRINT T;
O=1: PRINT BS;
IF K>1 THEN PRINT K;
PRINT "X)";: RETURN
IF T=-1 THEN PRINT "-";: T=1l: GOTO 900
GOTO 890

Y=INT(T+.5) : X=ABS(T-Y): IF ¥<.01 AND ¥<=Q*ARS(T) THEN T=Y
IF ABS(T)<Q*F THEN T=0

RETURN

END

PICOMATH-80

TNDEX

ACHM: 4~1

abbreviations: 2-10, 7-8
ALTRAN: 4-3

basis functions: 6-1
bibliography: 4-1
cancellation: 2-2,

canonical: 2-9

cofactor: 6-5

command level: 2-3

common denominator: 2-1, 6-13
computer algebra: 4-1
continued fraction: 6-13
cosecant: 2-9

copyright: 3

'-1, 7_8, i

cotangent: 2-9
degree bounds: 2~2, 2-7

dictionary:

6—'5’ 6_8, 6_11, 6_16

differentiate: 1-2, 2-6

discrepancy:

2-2

discrete Fourier transform: 6-9

domain: 2-4

education: 5-1, 4-1

environment:
evaluation:

2-1, 7-9
2=-3, 6-1

FXECute instruction: 7-9
exampless 2-5, 2-8, 2-10, 2-13
exponentiation: 2-1, 2-7, 7-3

Fast Fourier
Fourier progr
FNCOT: 2-9
FNC5C: 2-8
FMNE: 2-9
FMO: 2-9
FNS: 2-9
FNSEC: 2-9
FORMAC: 4~3

Transform: 6~
am: 2-11, 1-1, 6-9, 8-8

greatest common divisor: 2-2

homogeneous:
Hildebrand:
INT function:
integer divis

6~12
6-12

7-6
ion: 2-5

integer variables: 7-1

integrate: 1
integration ¢
interactive:
interpolant:
interpolate:
inverse: 6-3
inverted diff
irrational:
linear: 6-9

-2, 2-6

onstant: 2-6, 2-10
4-2, 7-9
6-1
2-3, 6-1

erences: 6-12
2-5

linear combination: 2-9
linearly independent: 2-9

February 10, 1981

PICOMATH-80 Index February 10, 1981

literal string constant: 7-1

1oAD: 2-1
method of undetermined coefficients: 6-1
MOD: 7-6

modulo: 6-9

monomial: 6-2

multiple angles: 1-1, 2-12
multiplication: 2-1

MuMATH: 4-3

negation: 2-7

normalization: 2-2, 6-12, 6-14
outline: 6-4, 6-7, 6-10, 6-15
overflow: 2-3

P: 2-10

Pl: 2-10

perturbation: 6-14

PI: 2-9 .

pole: 6-6

polynomial division: 2-7
polynomial program: 2-6, 1-1, 6-1, 8-3
precedence: 2-7

precision: 2-2, 2-3, 7-1
professional society: 4-1
Programma International: 3-1
rational program: 2-1, 1-1, 8-8
rectified sine wave: 2-13
recurrence relations: 6-9, 6-13
REDUCE: 4-3

references: 4-1

representable: 6-6

roundoff error: 2-2, 6-14

RUN: 2—1’

SAC-2: 4-3

secant: 2-9

SGM function: 7-6

SIGSAM: 4-1

singular: 6-12

smoothing: 6-3, 2-2

spectrum: 2-13

SOR function: 7-6
substitutions: 2-4, 2-7
systems: 4-2

The Soft Warehouse: 3-1, i

trig identities: 1-1, 2-9, 2-10, 2-12, 2-13
trig program: 2-9, 1-1, 6-6, 8-5
truncation: 2-5, 7-6

underflow: 2-3

univariate: 6-2

zerodivide: 2-4

zeros: 6-2

: 7-1
%: 7-1
% 2-1, 2-7, 7-3
- 2=7
*: 2-1

	0 PicoMath manual cover.pdf
	1 PicoMath 1st few pages.pdf
	2 PicoMath remaining pages.pdf

