
Spu(3"1X) -2
&IN (X) /W
(15*X-9) -4
TAN (X)

x+34/x
Y+18*Z 132*95
SIN (PI 2mSn2+5
OOLS (-PI) (X+18*Z)
(3+xn2) -2 W2-1At
TAN(X) -2-1 23/ (X+3flo

(2*X+Y-2) ^2* (X-3*Y+13
COs(Y1 X+= 367890
~+z-42 m Y/Y+~O
2+2+22 d33/dX
an! (X) 3 5 7 6 8
ari-4) -5 m-5) -4
2XX+3- (W81 -5
2+PI/25 CSC (-X)

dz/dx J'9- (X) .csc (X) dX
C9C (-X) sQR((x62+1) -21 W 4
4Xxn3+5 SIN (X) -2- (-X) -2

SIN(-8%) (12+x+x''2+xn3) -2-X
x+x%"~ X+X ((-X)) 123

SBC (X) A (-2) 4*5*66
1+x+xa2+x-3 X+Y+43

SIN(X) 34+173 CUl! (X)
X% x+x+z 22%-

L~X*Z& 'WN(X) ~"5-18
S57dx 278% @I/&

(X-3) "3/ (3* (X+1) SIN(Y)
SIN(X) nOaS tl/2+X) W 8 2

(((X+3) *X-2) %+8) SQBI(2)
~ (ARJ (X -13) / (X -U) 4-(0x1

X+Y+2*Z IIX;(PI) X-33/x
X+32/X Y+31*X X+Y-t59

tm
W+Z) -2 W (X*)
X+X+Y+Z x?x+Y+z
123+443 X/ &+3)
TM;(9) 3.1415
x+W13 Y+Y*33
9 2 / 3 4 Z+X+15
arr (W21 -m a[) +X-X
X+X+Y-3*Y+4%-3*Z+8 -80
cm (x+Y) -SIN (X-Y +2
(X+1) * (X+2) * &+3) *X
m + 3 3 SElCCX)
33-2-5 X+33*Z
X+34+Y m (x)
SIN(Y) 2+67+2
SBC (-X) (9-1 -4
(4%) -6 Y+ (X+Z)
(2+9) -2 d9rKY/laX

84 1 8 X P Z 39 75 25 X 73
X*8 4*Z 8-9 56-X 73 92 77 X-Y 64
Y+33 48% 49 63 90 32 84 52 97 1 9 23 85
44 r*Y 68 CU6(23) 33 44-5 27 63 dXa3/dX 13
66 Y 32 42 35 14 Y% dY/dx 47 74 IIANU[)

Copyright Notice

- - ----P --p -

February 10, 1981

Copyright Notice

Copyright (c), February 1980 by The S o f t Warehouse.
A l l Rights Reserved Worldwide. No par t of t h i s manual may be
reproduced, transmitted, transcribed, stored i n a re t r ieval
system, or translated in to any human or computer language, i n
any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, except i n accordance
with the Copying Policy section of t h i s manual or by express
w r i t t e n permission of The Sof t FJarehouse, P.O. Box 11174,
Honolulu, Hawaii 96828, U.S.A.

Trademark Notice

PICO!WTH is a trademark of The So£ t Warehouse.

Disclaimer

The S o f t Warehouse makes no r e p r e s e n t a t i o n s o r
w a r r a n t i e s w i t h r e s p e c t t o t h e c o n t e n t s h e r e o f and
s p e c i f i c a l l y d i s c l a i m s any i m p l i e d w a r r a n t i e s of
merchan t ib i l i ty o r f i t n e s s f o r any p a r t i c u l a r purpose.
Further, The Soft Warehouse reserves the right t o revise t h i s
pub l i ca t ion and t o make changes from t i m e t o time i n t h e
content hereof without ob l iga t ion of The Sof t Warehouse t o
n o t i f y any person o r organiza t ion of such rev i s ion o r
changes.

TABLE OF CONTENTS

Copyright Notice
Table of Contents

. 1 Introduction
2 . Usage

2.1 Using the Rational Program 2.2 Using the Polynomial Program . . . 2.3 Using the Trigonometric Program 2.4 Using the Fourier Program

. 3 Copying Policy

4 . How To Learn More About Computer Algebra 4.1 The Professional Societies
4.2 The Literature 4.3 Available Systems

5 . Computer Algebra in Education
6 . How PICOMATH Works

6.1 The Polynomial Program 6.2 The Trigonometric Program
6.3 The Fourier Program 6.4 The Rational Program

7 . Installation and Adaptation Guide 7.1Precision
7.2Assignments 7.3 Printed Messages and Remarks
7.4 Array Dimensions and Subscripts 7.5 Exponentiation
7.6 Multiple-statement Lines 7.7 Relational Operators
7.8 Logical Operators 7.9 Built-in Functions
7.10 String Variables and Comparisons . .
7.11 Space Requirements
7.12 Other Languages
7.13 Testing

8 . Program Listings
8.1 Rational Program 8.2 Polynomial Program
8.3 Trigonometric Program 8.4 Fourier Program

Index

Introduction

- p - - p -- - -

February 10, 1981

PICOMATH-80 is a package consisting of four demonstration computer-
algebra programs originally written in BASIC:

1. The p~lynomial program can expand an expression such as

into the equivalent polynomial

2 x3 + 3 x2y - 9 - 784 z2 + 56 z - l
2. The ratianal program can expand and simplify an expression such as

into the equivalent ratio of two polynomials, reduced to lowest
terms

x+l

(Although the rational program also treats polynomials as a special
case, the polynomial program can accommodate more variables.
Moreover, the polynomial program permits higher degree on most
implementations, and the polynomial program is generally more
accurate when both programs are applicable,)

3. The trigonometric program can expand and simplify an expression such
as

1 + tan2x

1 + cot2x

into the equivalent standard form

2 sec X - 1
(As a special case, alleged trigonometric identities may be proved
or disproved by expanding and simplifying the difference in their
two sides.)

4. The Fourier program per£ orms trigonometric transformations that
complement those provided by the trigonometric program.
Specifically, the Fourier program transforms polynomials in sines
and cosines of X and integer multiples thereof into a linear
combination of such sines and cosines -- ie. the reverse of
multiple-angle expansions. For example, the program transforms

PICa3ATH-80 Introduction ~ebruary ' 10, 1981

64 sin4x cos3x
in to

3 COS X - 3 COS(^ X) - COS(^ X) + COS(^ X)

All but the rat ional program can a l s o symbolical ly d i f f e r e n t i a t e
and i n t e g r a t e such expressions according t o t h e r u l e s of calculus.
However, a knowledge of t r igonometry o r c a l c u l u s is unnecesssary f o r
u t i l iz ing the more elementary features of the PICOIIATH package.

PICOMATH is smal l enough t o run on v i r t u a l l y every computer, and
t h e o r i g i n a l source code w r i t t e n i n BASIC is e a s i l y adapted t o o the r
languages besides W I C .

Sect ion 2 of t h i s reference manual is a user 's guide, e l abora t ing
on the brief usage instructions printed by the programs. Section 3 is a
s ta tement of t h e generous condi t ions under which copying of t h i s
document and/or i n s t a l l i n g t h e package on an a d d i t i o n a l machine a r e
permitted. ,Sect ion 4 is a brief guide for those who wish t o learn more
about computer a lgebra i n general. Sect ion 5 is a d iscuss ion of t h e
p t e n t i a l uses of computer algebra in education. Section 6 is an expla-
na t ion of how PICOMATEl works. Sect ion 7 con ta ins i n s t r u c t i o n s f o r
instal l ing and test ing the generalized programs l i s t e d in Section 8.

Mere usage of an instal led version of the programs requires a t most
s tudy of s e c t i o n s 1 and 2. I n s t a l l a t i o n of t h e program requ i res t h e
additional use of sections 7 and 8. Section 6 can be explored by those
who are curious about how PICO!IATH works and are experienced i n program-
ming together with numerical analysis.

PICOhmTH-80 Using the Pational Program ~ebruary ' 10, 1981

The polynomial program presumes fami l iar i ty with the concepts of
adding, sub t rac t ing , mul t ip ly ing and expanding in teger powers of
polynomials. The rat ional program further presumes fami l iar i ty with the
concepts of placing rational expressions over a common denominator and
cance l l ing t h e g r e a t e s t polynomial f a c t o r t h a t evenly d i v i d e s t h e
r e s u l t i n g numerator and denominator, The t r igonometr ic and Four i e r
programs further assume famil iar i ty with radian measure, the relat ions
between the various t r i g functions, and the concept of exploiting var-
ious i d e n t i t i e s such a s multiple-angle formulas t o s i m p l i f y t r i g
expressions. Usage of the d i f f e r e n t i a t i o n and i n t e g r a t i o n opt ions of
t h e polynomial, t r igonometr ic and Fourier programs f u r t h e r r equ i res
fami l iar i ty with elementary calculus.

This reference manual a l s o presumes f a m i l i a r i t y wi th use of t h e
computer and t e rmina l employed, together wi th t h e language i n which
PICOMATH is implemented: Specifically, you a re assumed t o know how t o
s t a r t t h e computer, load BASIC o r whatever is used t o implement
PICOMATH, then LOAD and RUN a saved program w r i t t e n i n t h a t language.
You are a lso required to know how t o modify an assignment statement of
such a program,

Given an appropriate math background, the eas ies t way t o learn t o
use a PICOMATH program is t o s imply LX)AD and RUN it, then fo l low t h e
displayed instructions. This section is merely an elaboration of those
brief instructions, This description applies t o a typical interact ive
BASIC implementation, Other environments may e n t a i l s l igh t or not-so-
s l i g h t d i f f e r e n c e s t h a t w e cannot predic t . Such d i f f e r e n c e s may be
described i n a supplement attached t o t h i s manual, prepared by whoever
adapted P I C O ~ ~ H t o the environment.

2.1 Using the Rational Program

Typical ly, a f t e r loading t h e r a t i o n a l program you replace t h e
example l ine 20 with an analogous l ine tha t assigning t o variable A an
expression tha t you want t o simplify t o a r a t io of two polynomials i n X,
reduced t o lowest terms. For example:

(Note tha t the circumflex "^", designating raising t o a power, is desig-
nated by an upward point ing arrow or a p a i r of a s t e r i s k s on some
systems. 1

After replacing l i n e 20, you e n t e r t h e RUN command, causing t h e
program t o display a simplified equivalent such a s A =

PICOI4ATH-80 Using the Pational Prcqram February 10, 1981

Note tha t the multiplication aster isk is suppressed in output but must
not be omit ted i n l i n e 20, Also, you must rename t h e one v a r i a b l e i n
your problems a s X i f not already named that.

Note how t h e expansion process inc ludes c a n c e l l a t i o n of t h e
polynomial greatest common divisor from the numerator and denominator so
tha t w e do not ge t incompletely simplified resul t s such a s

Moreover, resul t s a re usually normalized so tha t e i ther the numerator or
denominator has a leading coeff icient of 1.

Roundoff error in the underlying BASIC arithmetic may cause some of
t h e c o e f f i c i e n t s i n t h e r e s u l t t o be inexact. For example, t h e above
resul t nught -display as

In an a t t empt t o minimize such annoying d i s t r a c t i o n s , t h e program
replaces r e l a t i v e l y miniscule c o e f f i c i e n t s by zero, whi le replac ing
nearly integer coefficients by the nearby integers. However, m exact
r e s u l t c o u l d t r u l y e n t a i l r e l a t i v e l y s m a l l o r n e a r l y i n t e g e r
coefficients, so the program imposes rather stringent thresholds before
making these adjustments. Thus, inexact coefficients may appear despite
the adjustment process.

I f t h e degrees of t h e r e s u l t i n g numerator and denominator a r e
modest and i f a l l coefficients in the unexpanded expression a re integers
of smal l magnitude, then t h e presence of s l i g h t inexactness i n t h e
corresponding expanded resul t is often obvious from inspection, i n which
case the appropriate "nearby" exact resul t is a lso often y o u s . (For
example, the above inexact r e s u l t is obviously n e a r l y (2x +X) / (x2-1) .)
In contrast, the s izes of roundoff errors i n a resul t are usually not a t
a l l obv ious i f t h e unexpanded e x p r e s s i o n c o n t a i n s n o n i n t e g e r
coefficients or i f the resul t contains coefficients of large magnitude.
Consequently, t o help identify problems for which roundoff errors have
yielded unacceptable accuracy, the program compares the unexpanded and
expanded formulas a t some sample points, displaying a warning message i f
cmy discrepancy a t these samples is large relat ive t o the largest sample
magnitude. Although extremely unlikely, these discrepancies a l l could
be r e l a t i v e l y s m a l l even though other samples would have revealed
serious inaccuracy. Thus, always inspect results for reasonableness a s
an extra precaution.

Whether o r not such a warning message is pr in ted , t h e program
f i n a l l y breaks execution, re turning c o n t r o l t o t h e executive command
l e v e l a f t e r d isp laying an epi logue message i n s t r u c t i n g t h e user t o
modify l i n e 20 and rerun i f desired. This message a lso announces bounds
on the maximum degrees of the resulting numerator and denominator tha t
the program is capable of accommodating. These degree bounds a r e

PICOl'"/TH-80 Using the Rational Program February 10, 1981

t y p i c a l l y s l i g h t l y less than half the number of s i g n i f i c a n t decimal
d i g i t s provided by t h e underlying BASIC a r i t h m e t i c when applying t h e
exponentiat ion operator , "*" . This accuracy may be l e s s than f o r t h e
o ther a r i t h m e t i c opera to r s -- p a r t i c u l a r l y i n double prec is ion ,
e s p e c i a l l y i f "^" is evaluated using exponent ia ls and logar i thms even
f o r in teger exponents. Moreover, even f o r r e s u l t s t h a t f a l l wi th in
these degree bounds, accuracy depends strongly upon whether or not the
given and r e s u l t i n g c o e f f i c i e n t s a r e i n t e g e r s of r e l a t i v e l y smal l
magnitude and upon whether or not the zeros and poles of the expressions
a r e favorably d i s t r i b u t e d between the sample points , Consequently,
common 7-digit single-precision arithmetic permits only modest results
to be accurately determined and displayed In contrast, the polynomial
program accommodates r e s u l t s having a numerator of degree 6 i n X, and
the polynomial program is usually more accurate when applicable.

The accuracy of all four PICOEaATH programs is more
dependent upon the simplicity of the exact result than upcm
the simplicity of the given expressian.

Limitations of the underlying arithmetic en ta i l another hazard: To
determine t h e expanded form of t h e formula on l i n e 20, PICOMATH
evaluates t h a t unexpanded formula a t severa l va lues of X, then
interpolates o r fits a r a t i o of two polynomials t o these samples,
Unfortunately, a t a particular sample point the unexpanded expression or
one of its subexpressions may exceed t h e BASIC a r i t h m e t i c magnitude
l i m i t , thus causing overflow, This phenomenon is part icular ly l ike ly i f .
a sample happens t o f a l l near a point where a denominator becomes zero.
Depending upon the particular BASIC implementation, the resulting action
may be:

1, Display a warning message, use the correctly signed number having
the largest representable magnitude in place of the unrepresentable
intermediate result , then proceed.

2. Display a warning message, use some l e s s appropriate number in place
of the unrepresentable result , then proceed,

3. Same a s 1, except without a warning message.

4. Same a s 2, except without a warning message.

5. Display an e r r o r message, then i n t e r r u p t execution, re turning
control t o the command level.

I n any event , you a r e un l ike ly t o proceed t o a s u f f i c i e n t l y
accurate resul t t o avoid the "serious discrepancy" warning message.

A related possibi l i ty is for a nonzero intermediate resul t t o have
a magnitude too smal l t o represent i n t h e a r i t h m e t i c , thus causing
underflow. Depending upon the BASIC implementation, t h e r e s u l t i n g
action may be:

1, Display a warning message, use zero in place of the unrepresentable
intermediate result , then proceed.

PICOMATH-80 Using the Pational Program February 10 , 1981

2. Same a s 1, except without a warning message.

3. Display an e r r o r message, then i n t e r r u p t execution, re turning
control t o the command level.

Here too you a r e u n l i k e l y t o proceed t o a s u f f i c i e n t l y accura te
resul t t o avoid the "serious discrepancy" warning message. Moreover, i f
an in termedia te r e s u l t is replaced by zero, a subsequent a t t empt t o
d iv ide by t h a t in te rmedia te r e s u l t causes a zero-divide error .
Depending upon the BASIC implementation, the resulting action may be:

1. Display a warning message, use some arbi trary representable number
in place of the undefined intermediate result , then proceed.

2. Same a s 1, except without a warning message.

3. Display an e r r o r message, then i n t e r r u p t execution, re turning
control t o the command level.

Here too, you a r e unl ike ly t o proceed t o a s u f f i c i e n t l y accura te
resul t t o avoid the "serious discrepancy" warning message. Moreover, a
zero-divide error could a r i s e d i rec t ly from a sample coinciding with a
zero of a denominator, r a t h e r than i n d i r e c t l y v i a underf low. However,
t h i s cause is quite unlikely because the program avoids t r i v i a l sample
values.

Overflow, underflow, o r zerodivide can occur a f t e r t h e expanded
expression has been p r in ted because sampling is used a l s o t o t e s t f o r
serious discrepancy. However, t h i s s i tuat ion is less serious because a t
l e a s t we then have an expanded r e s u l t t h a t was computed wi thout
incurring these diff icul t ies .

For a l l four PICOMATH programs t h e expecta t ion of overflow,
underf low, zerodivide and excessive roundof f e r r o r is diminished by
formulating the problem in a manner tha t employs only small-magnitude
integer coefficients and low degree a s much as possible. For example:

1. Perhaps a t r i v i a l common denominator can be identif ied by inspection
and removed along with a common divisor of the resulting coeff icients
before submitting the problem t o PICOIIATH.

2. Perhaps t h e problem only involves even powers of X, s o t h a t t h e
degree can be halved by merely replacing xn2 with X before submitting
the problem.

Simple substitutions often permit application of t h i s program t o
problems tha t a re otherwise outside its domain. For example, replacing
cX by X transforms the expression

i n t o t h e one a t t h e beginning of t h i s subsection. The inverse
substitution on the simplified resul t then yields the expression

Using the Pational Program ~ebruary 10, 1981

The formula on line 20 can even entail irrational operations if the
formula is defined at all of the sample values and if the formula can be
simplified to a single rational expression interpolating those sample
values. For example:

This possibility is of course of limited utility because most
expressions involving irrational operations are undefined over some
intervals for X or because the expressions do not simplify to a ratio of
polynomials even over a somewhat restricted interval for X.

Warning: Some implementations employ integer division
when both operands are of integer type, causing (1/3) to be
interpreted as zero in the above example, Experimentally
determine how your implementation behaves in this regard, and
if necessary be sure to make at least one operand of "/" be
floating pint whenever that is intended.

Here are some examples that should work on any reasonable 7-digit
float ing-point ar i thrnet ic, thus helping to test your implementat ion of
the rational program or reveal weaknesses in your built-in arithmetic:

------p---

Using the Rational Program February 10, 1981

2.2 Using the Po1- Program

Usage of the polynomial program is similar t o the rat ional program,
except with the added option of requesting different iat ion or integra-
tion. Typically, a f t e r loading the polynomial program you replace the
example l i n e 20 wi th an analogous l i n e assigning t o v a r i a b l e A an
expression tha t you want t o simplify t o an expanded polynomial i n X, Y
and Z, then perhaps a lso different iate or integrate. For example,

Then, you e n t e r t h e BASIC RUN command, a f t e r which t h e program i n t e r -
actively asks the user t o enter E for Expansion, D for Differentiation
o r I f o r In tegra t ion , a s desired. After receiving a v a l i d response t o
t h i s query, the program proceeds t o determine then display the desired
result , such as respectively

Here "S" denotes t h e i n t e g r a l s ign , "p. Note t h a t t h e a r b i t r a r y
cons tant of i n t e g r a t i o n is suppressed a s is customary i n i n t e g r a l
tables.

The polynomial program uses techniques s i m i l a r t o t h e r a t i o n a l
program t o minimize yet detect excessive consequences of the underlying
limited-precision, limited-magnitude BASIC a r ithrnet ic. For example, the
polynomial program pr in t s a warning message i f evaluation of the given
and expanded formulas a t any of severa l e x t r a sample po in t s y i e l d s a

PICOEIATH-80 Using the Polynomial Program February 10, 1981

relat ively large discrepancy.

Whether o r not such a warning message is displayed, t h e program
f ina l ly breaks execution, returning control t o the command level a f t e r
d isp laying an epi logue message i n s t r u c t i n g you t o modify l i n e 20 and
rerun i f desired. This message a l s o announces t h a t i n t h e expanded
equivalent of l ine 20, any term containing X must be of t o t a l degree <=
6, any term conta in ing Y must be of t o t a l degree <= 4, and any term
containing Z must be of t o t a l degree <= 2. For example, X*Y*Z is not a
representable term. Thus, it may be necessary t o rename v a r i a b l e s i n
the original statement of a problem so tha t X has the highest degree, Y
has the next highest degree, and Z is the remaining variable, i f any.

Simple substitutions often make t h i s program applicable t o problems
tha t a re i n i t i a l l y outside its scope. For example, replacing ~ " 2 by X
pe rmi t s you t o determine the c o e f f i c i e n t s i n t h e expansion of (~ " 2 +
6 As another example, ((X+Y) ̂ 4+17) "2 can be expanded wi th some
manual a s s i s t a n c e by s e p a r a t e l y computing (~ + 1 7) -2 and (x+Y) -4, then
manually s u b s t i t u t i n g t h e l a t t e r r e s u l t f o r Z i n t h e former r e s u l t ,
followed by a manual expansion of 2-2 therein.

Do you i n t e r p r e t -x2 + 5 a s meaning -(xn2) + 5 o r (-X) "2 + 5,
which simplif ies t o x2 + 5? As with most people and most programming
language implementations, PICOMATH o u t p u t employs t h e f o r m e r
in te rp re ta t ion . However, beware t h a t some programming language
implementations employ t h e l a t t e r i n t e r p r e t a t i o n , and t h a t PICOMATH
input u t i l i z e s the built-in precedence rules. Experimentally determine
the local built-in rules, then parenthesize i f necessary t o accomplish
t h e des i red e f fec t s . Also, although PICOMATH does not produce nested
exponentiations a s output, some implementations permit unparenthesized
repeated exponentiat ions i n l i n e 20 of t h e program. I f so, be su re t o
l e a r n whether ~ " 2 - 3 is i n t e r p r e t e d a s ~ " (2 ~ 3) o r (~ " 2 1 ~ 3 , then
parenthesize i f necessary t o achieve the desired effect.

The polynomial program uses polynomial interpolation, j u s t a s the
rational program uses rational interpolation. However, unlike rational
expressions, a polynomial does not en ta i l the embarrassing poss ib i l i ty
of being undefined f o r f i n i t e values of its variables. Thus, the prog-
ram can use integer values of small magnitude a s sample values for the
polynomial variables, which usually helps reduce roundoff errors. Un-
fo r tuna te ly , overflow, underf low o r zero-divide e r r o r s a r e possible .
For example, even the relat ively benign appearing formula

produces both underflow and overflow when sampled a t X = l , 3gsing
ar ' thmetic tha t l i m i t s nonzero magnitudes t o l ie between about 10' and
1038, a s is qui te common.

The formula on l i n e 20 can e n t a i l non-polynomial subexpressions
i f the formula is defined a t a l l of the sample values and i f the resul t
can be simplified t o a polynomial. For example, t o determine i f

2 x 3 - 3 x + 4

Using the Polynomial Prqrm ~ebruary. 10, 1981

exactly divides

(and if so to determine the resulting quotient), we can use

20 A = (6*xn5 + 8*xn4 + 13*xn3 + 22*X - 8)/ (2*xn3 - 3*X + 4)

Then, the result is the quotient unless a "serious discrepancy" warning
indicates that exact division is impossible. A zerodivide or overflow
message for such an example is probably due to a sample point coinciding
with a zero of the divisor.

Here are some examples that should work on any reasonable 7-digit
f loating-point arithmetic, thus helping to test your implementation of
the polynomial program:

Using the Trigonometric Program February 10, 1921

2.3 Using the Trigonametric Program

Use of the trigonometric program is similar to the polynomial
program, except that the given and resulting expressions are
trigonometric rather than polynomials. Typically, after loading the
trigonometric program the user replaces the example line 20 with an
analogous line assigning to variable A an expression that the user wants
simplified to a linear combination of the terms

1, sin X, CO X, tan X, cot X, csc X, sec X, E 2 sin X cos X, sin X, sec X, tan X sec X, cot X csc X,
sin y, cos y, sin x sin y, sin X cos y, cos X sin y, cos X cos y,

meaning a sum wherein each term is one of the above, perhaps multiplied
by a numerical coefficient. These terms are linearly independent,
meaning none of them can be expressed as a linear combination of the
others. Consequently, when the nonzero terms are displayed in a fixed
order, such a linear combination provides a unique canonical (meaning
standard) form for all expressions that are equivalent to any such
linear combination. As a special case, any expression equivalent to
zero simplifies to zero, so candidate trig identities may be verified or
disproved by determining if the difference in their sides simplifies to
zero. Moreover, many of the nonzero trig expressions prevalent in
trigonometry texts are equivalent to such a linear combination. (For
example, cos(2 X) and sin(x-y+v/2) are in this class.) Alsor although
simplicity is in the eye of the beholder, the resulting linear
combination is often the simplest possible form of the original
expression for most purposes. At any rate, the result provides a
possibly different alternative to the original form, which can then
serve as a point of departure for further transformations using the
Fourier program or manual techniques.

When entering a trig expression on line 20, note that most BASIC
implementations :

1. do not provide built-in secant, cosecant and cotangent function;

2. require all user-defined functions to be spelled beginning "FN";

3. permit only one letter following FM.

Thus, either you may have to avoid these three trig functions in
favor of their reciprocals, or you may have to suffer names such as FNE
for SEC, FNS for cSc, and FNO for cot. At best, you will probably have
to use names such as FNSEC, FNCSC and FNCOT. Experimentation will
quickly determine the situation for a particular BASIC implementation.

As an example of program usage, you could modify line 20 to be

Note how the trig program presumes radian measure, and how we can use
"PI" to represent the ratio of the circumference to diameter of a

PICOPIATH-80 Using the Trigonometric Program E'ebruary 10 , 1981

c i r c l e . (This may be s p e l l e d "Pl" or merely "P" on BASIC
implementations that do not permit multipleletter variable names.)

Next, enter the RON command, a f t e r which the program interact ively
asks the user t o enter E for Expansion, D for Differentiation, or I fo r
In tegra t ion , a s desired. After rece iv ing a v a l i d response t o t h i s
query, t h e program proceeds t o determine then d i sp lay t h e des i red
result , such a s respectively

A = COS X

dA/dX = -SIN X

S A dX = SIN X

where "S" denotes t h e i n t e g r a l s ign , . Note t h a t t h e a r b i t r a r y
cons tant of i n t e g r a t i o n is suppressed a s is customary i n i n t e g r a l
tab les . Note a l s o t h a t although parentheses around simple funct ion
a rguments a r e o m i t t e d i n PICOMATH o u t p u t f o r b r e v i t y , most
implementations requ i re them i n l i n e 20. PICOMAT output s i m i l a r l y 3 abbrevia tes powers of funct ions , such a s using SIN X r a t h e r than t h e
equivalent SIN(XIA2 probably required i n l i n e 20.

A s with the rational program, the trigonometric program enta i l s the
possibi l i ty of underflow, overflow or zerodivide, because l i n e 20 may
contain tangents, secants, cotangents, cosecants, and denominators tha t
a re zero or nearly so a t sample points.

Here are s o m e examples tha t should work on any reasonable 7-digit
floating-point arithmetic, thus helping t o verify your implementation of
the trigonometric program:

tan X s in X + cos X --> sec X,

X+Y X-Y
s i n - 1 cos ---l --> 0.5 s i n y + 0.5 s i n X,

2 2

s i n (x+3n/2) cos (x-3W/2)
+ -------m-- -> - t a n x + l,

cos (x+m s i n (x+f5/2)

1 + cos(2 X) s i n (2 X)
-------m---- + -----m-- - - 4 cos X,

COS X s i n X

sin2x
1 - -------- - - COS X,

1 + cos X

PICaIAm-80 Using the Fourier Program February 10, 1981

sin X + cos X tan x
- - 2 cos X,

tan X

2 cos2(x/2) - 1 -> cos X,

(csc2x - 1) tan X -> cot X,

(sec X - cos X) (tan X + cot X) -> tan X sec X,

(tan X + cot X) sin X cos X --> 1,

cot (x/2) --> cot X + csc X,

1 + tanZx , '

------m 2 - - sec X - 1,
1 + cot2x

sin X
cot X + -------m - - CSC X,

1 + cos X
d
-- [CSC (2 X) COS XI - - -0.5 cot X csc X,
dx

sec x - tan X - 1
--------------m- -> tan X - sec X,
tan X + sec X - 1
S tan X dx - - - In cos X.

2.4 Using the Fourier Program

Use of the Fourier program is quite similar to the trigonometric
program. In fact, the Fourier program is actually another trigonometry
program that tends to transform expressions into a different form than
that of the "trigonometric" program: The Fourier program transforms
products and powers of sines and cosines into linear combinations of
sines and cosines of X and integer multiples of X -- the opposite of
multiple-angle expansions. The name derives from the applicability to
Fourier analysis and the desire to avoid confusion with the other
program.

As with the trigonometric program, you replace line 20 with an
analogous line assigning a trigonometric expression in X to variable A,
then enter the RUN command and answers the query choosing Expansion,
Differentiation or Integration. The program then proceeds to display
the corresponding "Fourier expansion1'.

PICCWIIATH-80 Using the Fourier Program ~ebruar~' 10, 1981

The Fourier program uses techniques similar to the other programs
to minimize yet detect excessive consequences of the underlying limited-
precision WIG arithmetic. For example, the Fourier program displays a
warning message if evaluation of the given and expanded formulas at any
of several extra evaluation points yields a relatively large
discrepancy.

Whether or not such a warning message is displayed, the program
finally breaks execution, returning control to the command level after
displaying an epilogue message instructing the user to modify line 20
and rerun if desired. This message also announces a bound on the
maximum multiplicity of angle X that the program can produce as an
argument of a sine or cosine. This multiplicity is set in the program
as the value of variable named M, which can be increased or decreased by
the user if desired. (Total computing time increases approximately
quadratically with M, and roundoff error also increases with M.)

The Fourier program uses an interpolation technique analogous to
those used by the other programs. However, the terms

(l, COS X, sin X, cos 2x, sin 2x, cos 3x, ...l

are all bounded and numerically quite distinguishable over the sampling
interval, compared to the terms employed by the other programs. Conse-
quently, the Fourier program is usually far less subject to excessive
roundoff errors, overflow, underflow or zerodivide.

Expressions that can be transformed to the appropriate
trigonometric form are expressions equivalent to polynomials in sines
and cosines of angles having the form

where n is integer and c is a constant, perhaps involving PI, which may
be spelled P1 or P in some implementations. Thus

is within the representable class, whereas

sin X + COS(~~)

is not. Although some expressions are representable using both the
trigonometric and Fourier programs, each program is applicable to
expressions that the other is not. Consequently, it is often worth
trying the other one if the first choice does not simplify the
expression enough.

One use of this program is to help prove or disprove trigonometric
identities: After manually simplifying the difference in the two sides
of an alleged identity into i: ratio of two appropriate trigonometric
polynomials reduced to lowest terms, you can independently submit the

PIC0t~'IATW-80 Using the Fourier Program ~ e b r u a r y 10, 1981

numerator and denominator t o t h e program t o determine whether or not
they a r e equivalent t o zero. The a l l eged i d e n t i t y is t r u e i f only t h e
numerator is equivalent to zero, whereas the alleged identi ty is f a l s e
i f neither the numerator nor denominator is equivalent t o zero.

A s already mentioned, another use of t h i s program is for spectral
o r harmonic Four ier analysis . I f l i n e 20 represen t s a funct ion of
periodicity 217, then the corresponding display approximately represents
its truncated Fourier expansion -- perhaps the exact expansion i f it is
f i n i t e . (It is of course t r i v i a l t o s c a l e t h e independent v a r i a b l e of
any periodic function so tha t its period is 271, so there is no essent ial
lack of f l e x i b i l i t y i n pis regard.) For example, t o determine t h e
Fourier expansion of s i n X, we simply use

whereas t o determine the approximate Four i e r expansion of the r e c t i f i e d
s ine wave Isin(x/2) 1 we merely use

20 A = ABS (SIN(X/2)

Here are some examples tha t should work on any reasonable 7-digit
floating-point arithmetic, thus helping t o test your implementat ion of
the Fourier program:

2 s i n (5 X) cos (3 X) -> s i n (2 X) + s i n (8 X) ,

(COS X + s i n xI8 --> 4.375 + 7 s i n (2 X) - 3.5 cos (4 X) - s i n (6 X)

+ 0.125 cos (8 X),

d
- [s in (5 X) cos (3 X)] --> cos (2 X) + 4 cos (8 X) ,
dx

l [s in (5 X) cos (3 X) l dx -> -0.25 cos (2 X) - 0.0625 cos (8 X) ,

d - [(COS X + s i n X) -81 --> 14 cos (2 X) + 1 4 s i n (4 X) - 6 cos (6 X)

dx
- s i n (8 X) ,

S [(COS X + s i n xIn81 dx -> 4.375 X - 3.5 cos (2 X) - 0.875 s i n (4 X)

+ 0.166667 cos (6 X) + 0.015625 s i n (8 X) .

Copying Policy ~ e b r u a r y ' 10, 1981

3, (mQYlxK)LICY

The most convenient and economical way for an individual t o acquire
sof tware is t o personal ly d u p l i c a t e t h e p r i n t e d documentation and a
machine-readable form of t h e program i f copies and dup l i ca t ion
f a c i l i t i e s a r e l o c a l l y avai lable . On t h e o the r hand, so f tware
manufacturers need comp&sation for the i r creative e f fo r t s t o cover the
development and advertising expenses. Accordingly, w e have devised a
simple means of providing customers with t h i s convenience and economy
whi le r e t a i n i n g a c l e a r conscience and incur r ing no anxie ty about t h e
severe penalties for copyright violation:

We hereby grant end users permission to duplicate the
PICOMATH-80 Reference Manual for a royalty of $1 per copy or
portion thereof, provided each cagy includes at least sections
1 and 3 in their entirety.

We hereby grant end users permission to install PIOOMATLE
80 for a royalty of $2 per machine on which it is installed or
used, provided the installation is performed in accordance with
the directions of section 6 of the PICONATH-80 Reference
Manual.

I f you wish t o avai l yourself of these opportunities, merely mail
a check, money order, or even cash, t o The Soft Warehouse a t Box 11174,
Honolulu, Hawaii 96828. W e even o f f e r a 33% discount f o r r o y a l t i e s
t o t a l i n g $6 o r more, which s h o u l d b e n e f i t s c h o o l s , c l u b s , o r
organizations having more than one computer.

This generous software dis tr ibut ion honor system is unique so f a r
a s we know. We hope tha t the experiment works, which would encourage us
and other software manufacturers t o d is t r ibute other software in t h i s
convenient manner i n the future.

Having end use r s dup l i ca te t h e sof tware saves us s u b s t a n t i a l
expense, so we are glad t o permit it. However, we plan t o continually
improve PICOMATH, so you may prefer t o obtain a new copy of the program
a t a computer s tore or from your licensed hardware manufacturer or from
Programma I n t e r n a t i o n a l a t 2908 N. Naomi St., Burbank, Ca l i fo rn ia ,
91504. Each copy includes an extensive reference manual explaining how
PICOElATH works and how t o adapt the generalized program l i s t i n g s therein
t o other languages and computers. Also, t h e machine- readable vers ion
provided with the manual may have enhancements tha t exploit extra accu-
racy, memory space, or special features of the part icular implementation
for which it is intended. The Soft Warehouse does not d i rec t ly d i s t r i -
bute manuals or machine-readable versions of PICOMATH t o end users.

Licenses for dis tr ibut ing machine-readable versions for additional
s p e c i f i c languages on s p e c i f i c machines a r e a v a i l a b l e from t h e S o f t
Warehouse t o hardware manufacturers or major software distributors.

PICOMATH-8 0 The Professional Society ~ e b r u a r y 10, 1981

M e expect t h a t many who experience PICOMATH o r a fu l l - f ledged
computer algebra system w i l l want t o learn more about t h i s fascinating
subject or w i l l want t o t r y a more powerful system Accordingly, here
is a brief guide to the relevant professional society, the l i te ra ture ,
and some widely available systems.

4.1 The Professional Societies

The Association for Computing Machinery Special In teres t Group on
Symbolic and Algebraic Manipulation is t h e major i n t e r n a t i o n a l
professional society for computer algebra. Their SIGSAM Bulletin is the
most concentrated and up-to-date source for abstracts and working papers
together with announcements of meetings and systems. For information
about joining, including s p e c i a l s tuden t r a t e s , w r i t e t h e ACM a t 1133
Avenue of the Americas, New York, NY 10036.

Some European groups devoted to computer algebra are:

1. SW-AFCm: Contact M. Bergman, Faculte des Sciences de Luminy, Case
901, 13009; o r con tac t J. Calmet, Univers i t a t Karlsruhe, I n s t i t u t
for Informatik I, 75 Karlsruhe 1, Postfact 6380, West Germany.

2. NIGSAP.1: Contact Y. Sundblad, Department of Numerical Analysis and
Computer Science, KTH S-10044 Stockholm, Sweden.

3. SEASISMC: C o n t a c t J. A. van Hulzen, Twente U n i v e r s i t y of
Technology, P.O. Box 217, 7500 AE enschede, The Netherlands.

4.2 The Literature

Regret tably, t h e r e is not y e t a textbook devoted t o computer
algebra, and the few textbooks tha t contain relevant material a re rather
advanced. Most of t h e information is sparse ly s c a t t e r e d i n research
journals o r l e s s a c c e s s i b l e conference proceedings and reports .
However, the following relat ively accessible references contain surveys,
bibliographies, and collections of a r t i c l e s tha t should serve a s a good
point of departure for exploring most face ts of the l i te ra ture :

1. ACM SIGSAM Bulletin, ACM, Hew York, a l l issues.

2. Comunications of the ACM 14, No. 10, August 1971.

3. SIAM Journal on Computing 8, No. 3, August1979.

4. Communications of the AQ1 9, No. 10, August 1966.

5. Journal of the AC&I 18, No. 4, October 1971.

6. P.S. FJang, editor, Proceedings of the 1981 ACM Symposium on Symbolic
and Algebraic Computation, ACM Order No. 505810, P.O. Box 64145,
Baltimore, MD 21264, $23.

PICO!'IATH-80 The Professional Society February 10, 1981

7. E.W. Ng, editor, Symbolic and Algebraic Compltation, Lecture Motes
in Computer Science, 72, Springer-Verlag, New York, 1979.

8. R.D. Jenks, editor, Proceedings of the 1976 ACM Symposium on
Symbolic and Algebraic Computation, ACE!, New York, 1976.

9. V.E. Lewis, editor, Proceedings of the 1979 MACSYHA User's
Conference, M.I.T. Laboratory for Computer Science, 545 Technology
Square, Cambridge, Massachusetts, 1979.

10. C.M. Anderson, editor, Proceedings of the 1977 MACSYElA User's
Conference, NASA CP-2012, 1977.

11. Knuth, D.E., The Art of Computer Programming, Volume 11,
Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1980.

12. Stoutemyer, D.R. and Yun, D.Y.Y., "Symbolic Mathematical
computationw, Encyclopedia of Computer Science and Technology,
J. Belzer, A.G. Holzman and A. Kent, editors, M. Dekker, Mew York,
Supplementary Volume 15, pp. 235-310.

4.3 Widely Available System

Despite an almost total lack of publicity, computer algebra has
been available for large mainframe computers since 1951 when the first
symbolic differentiation program was written. Since then there have
been numerous major general-purpose computer algebra systems
implemented. In contrast to the PICOMATH demonstration package:

1. They require up to 400 times as much memory space.

2. They accommodate a significantly larger class of expressions,
including equations, multivariate and matrix or tensor expressions.

3. They provide their own indefinite-precision arithmetic to avoid the
serious limitations of finite-precision arithmetic.

4. They accommodate much larger expressions having hundreds or even
thousands of terms, with coefficients having hundreds of digits.

5. They provide a larger suite of built-in and optional
transformations, including factoring and partial-fraction expansions
for example.

6. They permit the user to save symbolic results as values of variables
for use in subsequent expressions, thus helping the user to perform
a sequence of related operations.

7. They provide convenient facilities permitting the user to write
function definitions and simplification rules to extend the built-in
capabilities by enlarging the allowable class of expressions or the
variety of available transformations.

PICOFWTW-80 Widely Available Systems February 10, 1981

Moreover, some of these systems are more interactive than PICOMATH,
permitting an exploratory dialogue wherein the user enters a sequence of
expressions, assignments, function definitions and simplification rules
at a terminal, viewing each corresponding result before deciding how to
proceed. Each result, function definition or simplification rule is
available for immediate use in each subsequent expression. Interaction
is less crucial for very large well-defined problems, but interaction is
highly desirable for "one of a kind" problems or moderate-sized problems
that could with some effort be done manually. Interactive systems are
also far more motivating for educational purposes, where the problems
tend to be small, numerous and varied.

In approximate order of increasing memory requirements, here are
some of the most widely available general-purpose systems that are
currently supported:

1. muMA!rE?-7gtm is an interactive system that runs on microcomputers
based on the 6502, 8080, 8085, or 280 microprocessors, provided they
have enough memory and an appropriate disk operating system These
include CP/M with at least 32 kilobytes of RAEl memory, the Radio
Shack TRS-DOS with at least 32 kilobytes of such memory, or the
Apple computer with at least 48 kilobytes of such memory. muMATH is
distributed to end users, computer stores and hardware manufacturers
by Microsoft at 10800 M.E. Eighth, Suite 819, Bellevue Washington
98004, and muMATH is also distributed by the authors: The Soft
Warehouse, at Box 11174, Honolulu, Hawaii 96828. The less common
CP/M disk formats are available from Lifeboat Associates, 1651 Third
Avenue, New York, N.Y. 10028.

2. SAC-2 is a non-interactive system which runs on any computer that
can directly run a 1966 standard FORTRAN program of at least about
120 kilobytes. Inf ormation about SAC-2 is available from Professor
George Collins, Computer Sciences Department, University of
Wisconsin, 1210 West Dayton St., Madison, Wisconsin 53706.

3. FORMAC runs on any IBM 360 or 370 that can accommodate a PL/I
program of at least about 150 kilobytes. FORlrIAC is semi-interactive
on some operating systems. Information about FORMAC is available
from Knut Eahr at GEID/IEV, D-6100, Darmstadt, Germany.

4. ALTRAN is a non-interactive system which runs on any computer that
can directly run a 1966 standard FORTlWt1 program of at least about
270 kilobytes. Information about ALTRAN is available from the
Computing Information Library, Bell Laboratories, 600 Mountain
Avenue, Murray Hill, N.J. 07974.

5. REDUCE is an interactive system that runs on the IBM 360 or 370, DEC
10 or 20, Univac 1100 series, Control Data Cyber series, Burroughs
6700, and several other computers, requiring a minimum of about 350
kilobytes. For information about REDUCE, write Anthony Hearn, Rand
Corporation, 1700 Main Street, Santa Monica, California 90401.

Additional systems are announced in back issues of the ACM SIGSW
Bulletin.

Conputer Algebra in Education ~ebruar~' 10, 1981

5 . COMPUTER ALGEBRA IN EDUCATION

It should be clear to anyone who has experienced a general-purpose
computer-algebra that it has enormous potential for use in education as
well as research. Not only can computer algebra make computing more
attractive to mathematically inclined students; computer algebra can
make mathematics more attractive to computer enthusiasts. It provides a
great opportunity for mutual reinforcement and cross motivation between
math and computer education.

Personal computer S are becoming so prevalent that students,
engineers, scientists, and mathematicians will soon be using computer
algebra extensively, It should not be more than a year or two before
general-purpose computer algebra is available on pocket calculators,
because :

1. Several manufacturers now make low wattage "CMOS" versions of most
popular 8-bit microprocessors, and CMOS versions of some 16-bit
microprocessors are currently under development.

2. There are already hand-held terminals with 3 2 kilobytes of low
wattage memory.

3. There are already hand-held calculators with a sufficiently large
low watttage liquid-crystals to display a reasonably large
mathematical expression -- perhaps one term at a time.

Eventually some enterprising manufacturer will surely merge these
three technologies, producing a hand-held calculator capable of running
a full-fledged computer-algebra system such as muMATH. Thus, it be-
hooves every math and computer science educator to explore how this
revolutionary tool can be used to aid education.

It is undeniably true that most students are far more intrigued and
motivated by the artificial intelligence and game playing applications
of computers than by the accounting and numerical applications that
currently account for most computer usage, Thus, it is advisable to
exploit this strong preferential interest to help teach both mathematics
and computer science. If more good math, science, and engineering
students are attracted to computers and more good computer-oriented
students are attracted to math, then more students will ultimately learn
to use computers effectively for both numeric and nonnumeric purposes.

Computer algebra makes a highly motivating introductory computer
programming course for math, science and engineering students. Computer
algebra is also an ideal principal language for such students, because
numbers and arithmetic comprise appreciably less than half of the
kindergarden through calculus math curriculum. Noreover, the limited-
precision integer and floating-point arithmetic typical of traditional
programming languages is not the kind of arithmetic taught in this
curriculum or used in everyday life.

PIC8IATH-80 Computer Algebra in Education February 10, 1981

Some educators may fear tha t computer algebra might cause algebraic
s k i l l s t o atrophy o r prevent them from developing i n t h e f i r s t place.
S imi la r concerns were undoubtedly expressed about Arabic numerals,
m u l t i p l i c a t i o n t a b l e s , logari thms, Laplace t ransforms and pocket
numerical c a l c u l a t o r S; bu t w e have survived t h e i r convenience. The
ra t ional Council for Teachers of Mathematics strongly supports the use
of numerical pocket calculators i n classrooms, and every reason for t h i s
support is even more t rue of computer algebra.

Automatic symbolic mathematics makes it possible for students t o
concent ra te on b a s i c mathematical concepts r a the r than spending an
inord ina te amount of t ime mechanically performing transformations.
Computer a lgebra lets s tuden t s explore such fundamental concepts a s
commutat i v i ty, associat i v i ty, groups and rings. Moreover, the extensive
a l g e b r a i c c a p a b i l i t i e s of computer algebra enables s tuden t s t o
investigate larger examples than is otherwise practical. Patterns thus
revealed may suggest use fu l theorems. Conjectured p a t t e r n s thus
v io la ted provide counterexamples a g a i n s t f a l s e hypotheses. Thus,
computer algebra can contribute t o teaching mathematical discovery.

Existing computer-algebra systems can a lso make other educational
contributions:

1. Trace packages can be used t o l e t s tuden t s wi tness each s t e p of an
algebraic simplification, rather than merely the f i n a l result.

2. The very f a c t t h a t a lgebra and ca lcu lus can be automated should
encourage average and poor math s tuden t s t h a t t h e f l a s h e s of
i n s p i r a t i o n c h a r a c t e r i s t i c of quick s tuden t s a r e unnecessary f o r
those opera t ions -- t h e r e is revealed hope f o r t h e s lower more
methodical students.

3. For s tuden t s who know how t o program i n t h e language i n which t h e
computer algebra packages are written, inspection of the underlying
a lgor i thms can he lp them l e a r n methods f o r accomplishing t h e
operations. Moreover, by programming extens ions t o t h e b u i l t - i n
f a c i l i t i e s , students can reinforce understanding of the built-in and
extended operations.

The above a r e ways t h a t e x i s t i n g computer algebra systems can be
used r i g h t now. However, t h e r e is a p o t e n t i a l f o r much more. In
conjunction with a computer-aided instruction package, existing computer
a lgebra systems could be used f o r extremely f l e x i b l e and i n t e l l i g e n t
a lgebra d r i l l , t e s t i n g , and t u t o r i a l dialogue.

None of t h e e x i s t i n g computer a lgebra systems is by i t s e l f a
computer-aided math i n s t r u c t ion system Thus, someone experienced i n
computer-aided i n s t r u c t i o n could employ PICOMATH a s p a r t of a s e t of
i n t e r a c t i v e math l e s sons or examinations.

PICaRTH-CO How the Polynomial Program F.lorks ~ebruary 10, 1981

Reading this section is completely unnecessary for usage or
routine installation of PICOMATH. This explanation of how PICOMATH
works is included primarily to satisfy the curiousity of those who are
interested. The design goal of extreme compactness necessitated
reliance upon built-in approximate floating-point arithmetic and use of
indirect synthetic techniques that are quite different from those
generally employed manually or by more sophisticated large symbolic math
systems. Consequently, a full appreciation of this explanation requires
substantial experience in both computer science and numerical analysis.
Thus, read on if you wish to pick up whatever you can, but don't despair
about pints that presume more experience or training than you possess.

PIWMATH generally uses the technique of evaluating the given user-
supplied formula at several numerical values of its independent
variables, then interpolating these sample values by an expanded
polynomial, ' rational expression, trigonometric expression, or Fourier
expressian.

Interpolation is most often used to estimate numerical values of a
physical quantity between experimentally-measured samples, or to
estimate numerical values of an irrational function between tabulated
approximate values: Mter determining the coefficients in the
interpolant, it is evaluated at the desired intermediate numerical
values of its variables in order to produce a numerical result. In
contrast, after determining these coefficients PICOEIATH displays them
interspersed with literal character-string constants such as "X^" or
"SIN(", in order to display a symbolic representation of the interplant
expression. Provided the given expression is mathematically equivalent
to one in the employed class of interpolants, and provided the degree or
multiplicity of the interpolant is sufficient, the latter is
mathematically equivalent to the given unexpanded expression, to within
cumulative roundoff error. In the polynomial, trigonometric and Fourier
case, it is trivial to derive the coefficients of the derivative or an
antiderivative of the interpolant from the coefficients of the inter-
plant, so these options are provided there. The following subsections
give a more specific explanation for each program:

6.1 The Folymnial Program

For multivariate polynomial interpolation using the same general
form of interpolant repeatedly, the most straightforward technique is to
use a preconditioned formula derived using the method of undetermined
coefficients. Since this general method is also used in the
trigonometric program, we describe it here in some generality: Let W
denote the vector of independent variables, such as (X, y, Z) in our
polynomial program. FJe wish to interpolate an expression S = £(W) by
a linear combination of n given independent basis functions:

based on samples

PICWATH-88 How the Polynomial Program Works ~ e b r u a r y 10, 1981

This implies tha t

These are n simultaneous l inear algebraic equations for n unknowns a l ,
a2, ..., %. Consequently, i n matrix notation,

Thus, t o determine the interpolant coefficients, w e merely have t o solve
these e q u a t i o n s .

In order t o display resul ts fu l ly expanded, the plynomial program
uses' a b a s i s of monomials such a s x6, x5, X*, x3y, etc. Given t h i s
b a s i s , we would l i k e t o choose sample p o i n t s t h a t minimize t h e
expectations of overflow, underflow, or severe roundoff error. No fixed
s e t of sample p o i n t s can be adequate f o r a l l p o s s i b l e polynomial
expressions on l i n e 20 or t h e program, bu t we would l i k e a s e t t h a t is
good f o r the l a r g e s t percentage of examples t h a t people a r e l i k e l y t o
t r y wi th t h i s program. Here a r e some cons ide ra t ions t h a t can help us
choose a good set of points:

P e o p l e t e n d t o have a s t r o n g p r e f e r e n c e f o r f o r m u l a t i n g
mathematical models sca led such t h a t t h e expressions p r i m a r i l y o r
ent i re ly en ta i l integer coefficients of small magnitude -- with a bias
toward p o s i t i v e c o e f f i c i e n t s , e s p e c i a l l y t h e c o e f f i c i e n t 1. I t is
e s p e c i a l l y easy f o r us t o grasp t h e s i g n i f i c a n c e of t h e i n t e g e r s 0
through 100, s o we tend t o choose o r i g i n s and u n i t s t h a t produce such
results. For example, t h i s explains the popularity of percentages over
the equivalent l e s s arbi trary decimal fractions between 0 and 1.

For s i m i l a r reasons, i f t h e zeros of a polynomial have physica l
significance or are of mathematical interest , which is often the case,
then there is a tendency for people t o formulate the mathematical model
in such a way tha t the zeros occur a t x=O or a t points X having absolute
values tha t a re neither extremely small nor large compared t o 1.

For polynomial interpolation, the expectation of excessive roundoff
e r r o r is minimized i f t h e sample a b s c i s s a s interlace t h e zeros of t h e
polynomial: In t h e univariate case i f t h e zeros a r e a l l s imple and
real, a good set of sample abscissas is roughly midway between each pair
of adjacent zeros and a l s o ou t s ide each end zero by an amount roughly
equal t o the distance between each end zero and its adjacent in ter ior
sample abscissa. Multiple, complex, and multivariate zeros complicate
the issue, but the same general pr inciple applies -- w e would l i k e the
sample points scattered between the zeros more or l e s s proportionally t o
the density of the zeros, taking in to account multiplicit ies. However,
w e do not know the locations of these zeros a t the beginning, and we do

PIC0~IATI-I-80 How the Polynomial Program V.7orks ~ebruary ' 10, 1981

not want t o waste t i m e and increase the risk of overflow or underflow
i n an a t t empt t o i s o l a t e them. Thus, i n view of t h e widespread
predilection for small-magnitude integers, a reasonable strategy is t o
use the origin and uniformly spaced points clustered about the origin a t
d i s t a n c e s n e i t h e r q u i t e smal l nor q u i t e l a r g e compared t o 1. Points
having small integer components have the additional advantage tha t i f
the coefficients of the given unexpanded polynomial a re a l so integer and
i f f o r in teger exponents t h e "^" opera to r is computed using repeated
multiplication rather than logarithms and exponentials, then no roundoff
e r r o r s a r e incurred when executing l i n e 20 of t h e program u n t i l t h e
magnitude of in te rmedia te r e s u l t s exceed t h e l a r g e s t in teger t h a t is
exactly representable i n the underlying floating-point arithmetic,

The m a t r i x F i s t h e same e v e r y t i m e t h e program is run.
Consequently, t h i s is one of those few ins tances where it is worth
inverting once and for a l l so tha t the pr ram need merely multiply the
vector S by t h e precomputed matr ix F-' i n order t o determine t h e
interpolant coeff icients a. Noreover, t o minimize roundoff error it is
desirable and worthwhile t o compute F - ~ exactly, which may be done using
more soph i s t i ca ted computer a lgebra programs such a s those l i s t e d i n
section 4.3, because the sample points a l l have small-magnitude integer
components. (This is another reason for choosing such sample points.)
In our polynomial case t h i s exact inverse turns out t o have relat ively
s imple f r a c t i o n s a s e n t r i e s , wi th a l a r g e por t ion of e n t r i e s t h a t a r e
zero. Consequently, t o save space and t ime t h e sample v a l es S a r e
stored a s individual scalar variables, and the elements of F-Y are not
stored i n an array. Instead, the coefficients a re computed d i rec t ly i n
terms of the sample values in a manner tha t exploits factoring a s much
a s poss ib le t o f u r t h e r reduce roundoff e r ro r , Also, t h e computed
coefficients are subjected t o a smoothing process: I f a coefficient is
wi th in 0.01 of an in teger , then t h e program rounds t h e c o e f f i c i e n t t o
t h a t i n t e g e r i n an a t t empt t o reduce t h e annoying e f f e c t s of roundoff
error discussed i n section 2.1.

Here is a b r i e f o u t l i n e of t h e program and a d i c t i o n a r y of its
variables:

How the Polynomial Program Works ~ebruary 10, 1981

Outline of the Polynomial Program

Lines I Purpose
-------+-- -------- ---.---
5-10 1 Declare double precision and integer variables, then skip

I around a subroutine and the prefatory remarks
- - -

20-30 1 Subroutine assigning a polynomial in X, Y and Z to A
-------+---
40-180 1 Prefatory remarks

190 I Initializations, including array dimensioning
--------$---

200-250 1 Query user for choice between Expand, Derivative or Integral,
1 and display left side of result equation

260-320 1 Collect enough sample values to determine the coefficients of
I x6; x5, and X

330-350 1 Determine coefficients of x6, x5, x4, & display nonzero terms
-------+--
360-450 1 Collect more samples to determine more coefficients

460-530 1 Determine additional coefficients & display nonzero terms
-------+--

540-550 l Collect 2 more sample points, recycling variables E, D and B
1

560-600 1 Determine additional coefficients & display nonzero terms
-------+--
610 I Collect two final sample points, recycling variable C

---- - p - - - - - - p - p - -

620-660 1 Determine remaining coefficients, displaying nonzero terms

670 I Display a zero if no terms were displayed before
--------+--

680 I Terminate display line
-------+--

690-750 1 Compare given and derived expressions at 4 transcendental
I points, then display a warning if any discrepancy is not
I relatively m 1 1 considering ~ccuracy("^")

------+---
760-790 1 Display a message explaining how to proceed to next example

800 I Stop

810-960 1 Subroutine for saving smoothed coefficient and displaying
I corresponding term if nonzero

------+--
970-980 1 Subroutine for smoothing a coefficient
------+--
990-10401 Subroutine comparing given & resulting expressions at sample

I points, updating maximum discrepancy & expression magnitudes

1050 I End
--------$--

How the Polynomial Program Works E'ebruary 10, 1981

S h / M ~ $ I ? ~ P I I L %

st.p mu/+
Dictionary of Variables in Polynanial Program

Names I Purposes -- ---- -- -- .------- - --
A I Latest sample ordinate

- array A I Interplant coefficients

I Response to Expand, Derivative or Integral query
+------------ -

B,C I Sum and Difference of 2 opposing ordinates

I Cofactor of the numerical coefficient and pawer of X

D,E,H,I,J,K, I Saved sample ordinates
L,MrP,QrR,S,TI +------------------
F I Saved sample ordinate or maximum ordinate magnitude

-t
G I Saved sample ordinate or maximum discrepancy

N 1 Duxmy subscript
-I----- P

0 I CXltput Flag: Has a term already been displayed?
+------

U 1 Candidate smoothed coefficient - --- P

V I Multiplier for coefficient when derivative or integral

W I Multiplrpose temporary
f----------------

X, Y, I Independent variables

PICCE!ATH-80 How the Trig Program Works February 10, 1981

6.2 The Trigonometric Program

The trigonometric program uses the same general technique as the
polynomial program, except that it employs a different set of sample
points and a different set of basis functions. The six fundamental
trigonometric functions have numerous interdependencies, so a certain
amount of judgement, care and experimentation is required to select a
linearly independent basis that spans the most useful class of
composite trigonometric functions.

Because of nontrivial denominators allowed in line 20 and because
of the tangents, cotangents, secants and cosecants among its basis, the
trigonometric program entails the hazard of sampling at or near a pole.
Thus, we must avoid sampling at the particularly likely poles X = 0,
+r/2 or p. On the other hand, other multiples of m6 or fb'4 lead to -
especially simple entries in matrix F, making it possible to invert F
exactly. These are the reasons behind our particular choice of sample
points. However, it is still possible for a sample point to coincide
with a pole of the expression in line 20 even though the corresponding
simplified expression is in the representable class. For example,
evaluation of

at x=flrr/4 may cause a zerodivide or overflow even though the expression
simplifies to 1 - sec2x, which is in the representable class.

Here are a brief outline and dictionary of variables in the
program:

How the Trig Progrm Works February. 10, 1981

(X1tline of the Trig-tric Program

Lines I Purpose
-----+==r================================~z=~~=z==c===r-========

5-10 l Declare double precision and integer variables, then skip
I around a subroutine and the prefatory remarks

-------+---
20-30 l Subroutine assigning a trig expression in X and Y to A
------+---
40-180 1 Prefatory remarks
------+--

190 I Initialization~, including array dirnensioning
-------$--

200-220 l Definitions of secant, cosecant and cotangent functions
--------+---
230-250 l Query user for choice between Expand, Derivative or Integral
--------+---
260-290 l Display answer announcement and left side of result equation
--------+--
300-470 l Collect sample values

7 ----

480 I Recycle X, Y and P as auxiliary constants
-------f--

490-960 l Determine coefficients, displaying nonzero terms
--------+--

97 0 I Display a zero if no terms were displayed before
-------+---
980-10101 Corry?are given and interpolated expressions at 4 more pints

- ---- I - - - -- - -- --

1020- 1 Display a warning if any discrepancy is relatively large
1050 1 considering Accuracy(ATN).

------+--
1060- 1 Display a message explaining how to proceed to another

1110 I example
------$---

1120 I Stop
--------+---

1130- I Subroutine for smoothing and saving a coefficient, then
1200 1 displaying the corresponding term if it is nonzero

-------+---

1210- l Subroutine for comparing given & interpolated expressions at
1270 1 a point, ugating maximum discrepancy & expression magnitudes

--------+--

1280 I End
-------+--

PICOlIATH-80 ~IOW the Trig Program Works February 10, 1981

Names

Dictionary of Variables in Trigonanetric Program

I Purposes
-

A I Latest ordinate sample
-------------+--
array A I Interpolant coefficients
-------------+---
AS I Response to query about Expand, Integral or Derivative

B,C;D,E;F,G; I Sums and Differences of opposing ordinates
H,I;J,K;L,M; I F, G and H are also used in discrepancy testing
Q,R;S,T;l?, Z I
-----------+--
B$ I Cofactor of numerical coefficient
------------+--
N I Dunmy subscript
----------L+---

0 I Output flag: Has a term already been displayed?
-------------+---
P l PI/4 or 2 * 2̂ (1/2) - 2
-------------+---
PI I btio of circumference to diameter of a circle ...
U I Candidate smoothed coefficient
------------+--
V I 14ultiplier of coefficient for integral or derivative
-----------+---
X I Independent variable or 2- (1/2)

Y I Independent variable or 3̂ (1/2) / 2
-------------+--

How the Fourier Program Works ~ e b r u a r y 10, 1981

6.3 The Fourier Program

The Fourier program uses an i n t e r p l a n t of the form

s = uo+ v1 s i n x + u l COS X + v2 sin(2x) + 1.32 COS (2x1 +..*+u~ cos (mx)

together wi th sample p o i n t s X = 0, %/n, 2.'li/n, ..., (n-1W/n, where
n=2m+l. This form of expression is widely used i n sc ience and
engineering f o r por t raying t h e spectrum o r harmonics of a pe r iod ic
function. Being canonical and linear i n the s ines and cosines, it is a
part icular ly convenient form t o use for many purposes. Moreover, fo r
such equally-spaced cyclic sample in ts , there is a known closed-form
expression f o r each element of FPodefined i n s e c t i o n 6.1. This l e a d s
t o the general closed-form solution

f o r k=1t2r***rmr where t h e a r e t h e sample ordinates . Arrays U and v
together comprise the ~iscreke Fourier Transform of array S. Because of
the periodicity of the sine and cosine functions in conjunction with the
uniformly-spaced cycl ic sample points, there are Fast Fourier Transform
methods tha t a re fas ter for large n than using straightforward summation
t o evaluate the above formulas. However, these more complicated methods
are not worth the required extra space i n t h i s program for adjustable n
as small a s 8. Nonetheless, the program does exploit the periodicity t o
reduce roundoff error by exactly reducing j k modulo m before computing
the s i n e and cos ine of 2jkfVn i n t h e above formulas. For e f f i c i e n c y
these sines and cosines are precomputed and saved as arrays C and S.
Also for efficiency, t h i s precomputation is done using the recurrence
relat ions

cos (k X) = 2 cos X cos [(k-11x1 - cos [(k-2)xIr
s i n (k X) = 2 cos X s i n [(k-l) XI - s i n E (k-2) XI,

for k = 2, 3, ..., n-l.

Here is an o u t l i n e of t h e program and a d i c t i o n a r y of its
variables :

How the Fourier Program b?orks February 10, 1981

atline of the Fourier Program

Lines I purposes
--------+--- -------- ...
5-10 l Declare double precision and integer variables, then skip

I around a subroutine and prefatory remarks
------+--

20-30 1 Subroutine assigning a (usually trig) expression in X to A

40-180 1 Prefatory remarks
--------+--

190 I Initialization~
------+--
200 I Automatically determine Accuracy(ATN)

210 I !tore initializations, including array dimensioning
-------+--
220-230 1 Query user for choice between Expand, Derivative or Integral

240-250 1 More initialization~, then terminate line

260-280 1 Use recurrences to get sines & cosines of sample abscissas
--------+--
290-320 l Determine sample ordinates, while accumnulating their total
--------+--
330 1 Determine & smooth non-trig term
-------+--
340-380 l Announce answer & display left side of result equation
-------+---

390-400 1 Display non-trig term if nonzero

T - - - -- -

440-580 1 Use Discrete Fourier Transform while displaying nonzero terms
---m---- f---

590 I Display 0 if no terms were displayed before
-------f--

600-680 1 Determine largest discrepancy and ordinate magnitude for some
I extra abscissas

--------+--

690-730 l Display a warning if discrepancy is not relatively small,
I considering Accuracy (Am)

740-800 l Display a message explaining how to proceed to next example
-------+--
810 I Stop

820-940 1 Subroutine for printing a trig term
--------+--
950-970 1 Subroutine for smoothing a coefficient
--------+---
980 I End
--------+--

How the Fourier Program Porks February 10, 1981

Dictionary of Variables in Fourier Program

Names I Purposes

A I Most recent ordinate sample

array A I Ordinate samples
---------+---
AS I Response to Expand, Derivative or Integral query
---------+--
B S I Leading portion of cofactor of numerical coefficient
--------+---

array C I Cosines of the ~~ample abscissas
----------+--
F I PI/4 or Maximum ordinate magnitude
---------+--
G I Maximum discrepanq magnitude
----------+---

H I Nontrig coefficient
----------+---

J I K I Dumny subscripts

M I Maximum allowable angle multiplicity
----------+---
N I Number of samples
----------+---

0 I Output flag: Has a term already been displayed?
----------+--
PI I Ratio of circumference to diameter of a circle

array S 1 Sines of the sample abscissas

T I Temporary
---------+--
array U I Cosine coefficients

array V I Sine coefficients
---------+---

W 1 2 cos (m/n)
----------+--
X I Independent variable
----------+--

Y I Candidate rounded coefficient
--------f--

Z I Temporary

How the Rational Program Works February 10 , 1381

6.4 nLe Rational Program

The method of undetermined coefficients is not a s a t t r ac t ive for
r a t i o n a l i n t e r p o l a t i o n because having some of t h e undetermined
coefficients i n the denominator of the interpolant makes the resulting
equations nonlinear:

m-1 + - 9 . + UO 'mxkm + Um-lxk - ---------------I-------
Sk - , for k = l , 2, ..,,n+m+2.

v n ~ k n + g l x k l-r1 + . . . + V.

The good news is t h a t these equat ions can be l i n e a r i z e d by
multiplying each equation by the denominator of its r ight side. The bad
news is tha t the resulting l inear equations are singular. However, more
good news is t h a t t h e equat ions a r e a l s o homogeneous so t h a t w e a r e
b lessed wi th not merely one but a whole in f i n i t e f ami ly of so lu t ions .
The reason f o r the e x t r a degree of freedom is t h a t given any s e t of
coefficients tha t s a t i s f y the above equations, then by cancellation any
nonzero common multiple of these coefficients a lso s a t i s f i e s the q u a -
t ions . Thus, w e a r e f r e e t o impose an e x t r a normal iza t ion condi t ion
such a s insis t ing t h a t the leading nonzero coefficient of the denomina-
t o r be 1. Regret tably, we do not know ahead of t ime which one is t h e
leading nonzero coefficient. We can of course f i r s t t r y se t t ing vn t o
1, then s e t t i n g t o 1, etc., u n t i l one of these choices enables t h e
equations t o be solved. However, t h i s means tha t we cannot invert the
coefficient matrix ahead of time i n order t o speed the rat ional program.
Moreover, i n the arena of inexact arithmetic, roundoff e r rors often turn
values tha t should be zero into nonzero values. Thus the program would
have t o incorporate judgement about whether or not t o regard a candidate
leading c o e f f i c i e n t a s negl ig ib le . The r e s u l t i n g program s i z e and
execution t i m e would be inconsistent with the other PICOE4ATH programs.

For t h e above reasons t h e program employs an u t t e r l y d i f f e r e n t
technique using inver ted d i f ferences . F.B. Hildebrand desc r ibes t h e
method on pages 494 t o 502 of t h e second e d i t i o n of h i s book t i t l e d
In t roduct ion t o Numerical Analysis, which is published by raw- ill.
Therefore, only a brief example is presented here t o suggest the overal l
idea. Those who a re famil iar with the method of divided differences for
polynomial interpolation w i l l notice great similarity.

Suppose t h a t t h e r i g h t s i d e of t h e assignment on l i n e 20 of t h e
program is

and t h a t our sample a b s c i s s a s a r e X = -2, -1, 0, 1, 2. The f i r s t s t e p
is t o form the following invertd difference table:

Ha? the Rational Program Works February 10, 1981

The column labeled "1" is simply the sample ordinates. The columns
t o its r i g h t a r e computed a s follows: L e t di denote t h e e n t r y i n
row i, column j. Then I j

X i - x j
d i r j = -------------m-

I for j>l and i>=j.
d i , j-l - dj-l, j-l

Readers who seriously want t o understand the method should take the t i m e
here t o verify the ent r ies manually according t o t h i s formula.

I f t h e expression on l i n e 20 of t h e program is equivalent t o a
rational expression, then t o within cummulative roundoff error we must
eventually ar r ive a t a column of identical entries. I f t h i s happens a t
column t, then the continued fraction form of the rational interpolant
is

L $ ------
%-l, t-l

dt,t

Thus for our example we have

In order t o express t h e i n t e r p o l a n t a s a r a t i o of two expanded
polynomials, t h e program p laces success ive te rms over a common
denominator, beginning with the l a s t two terms a t the bottom right of
t h e expression. The process can be summarized by t h e fol lowing
recurrence relation for a seyuence of polynomials Pk:

PIC8IATH-$0 How the Rational Prqram Works February 10, 1981

'k = dk,k pk+1 + (x-xk) pk+2, for k=t- l , t-2, .,,, 1.

Then p1/p2 is t h e des i red ra t io . W e encourage you t o v e r i f y t h a t t h i s
g lves (2 X + 1) / (X -0.5) f o r our example. Note how t h e g r e a t e s t
common d i v i s o r is au tomat ica l ly canceled and how t h e leading nonzero
c o e f f i c i e n t of e i t h e r t h e numerator or denominator is au tomat ica l ly
normalized t o 1, according t o whether t is odd or even respect ive ly .
I f a displayed answer does not have the proper normalization, then it
is because the uni t leading coeff icient was replaced by zero for being
negligible compared t o other coefficients in the same polynomial.

To save space, only the rightmost inverted difference i n each row
is re ta ined a t any t i m e , t hus pe rmi t t ing a s ingly-subscripted r a t h e r
than double-subscripted array. S imi la r ly , only t h e two most r e c e n t l y
computed polynomials Pk a r e re ta ined, wi th polynomial Pk overlaying
polynomial p +2. To save a d d i t i o n a l space, t h e absc i s sas , o rd ina tes , E inver ted d i f e rences and polynomials Pk a l l overlay each o ther i n t h e
same shared array named R

Roundoff e r rors generally destroy exact q u a l i t y in the column tha t
should have identical entries. Thus what we want t o detect is q u a l i t y
t o "within cumulative roundoff error" i n order t o decide where t o s top
i n order t o avoid excessive roundoff error, overflow or division by zero
when a t tempt ing t o compute the next column. Also, t o minimize t h e
expecta t ion of having a sample absc i s sa near or on a zero of any
denominator i n program l ine 20, the program begins with the transcenden-
tal absc i s sa l n 2, then takes successive a b s c i s s a s 1 less, then 1
more, then 2 less, then 2 more, etc. Moreover, the program may skip any
of these candidate absc i s sas i f an es t imated bound on t h e cumulative
roundoff e r r o r i n an inver ted d i f fe rence sugges ts t h a t t h e inver ted
difference might be mostly roundoff noise. The program stops comput-
ing a d d i t i o n a l inver ted d i f f e r e n c e s when 3 success ive candidate
abscissas have been rejected for t h i s reason.

The error bound estimates for the inverted differences i n array A
are stored in corresponding elements of array E. These estimates a re
computed using perturbed abscissas t o estimate bounds on the roundoff
e r rors i n the ordinates, then using linearized rules bounding propga-
t ion of roundoff in subsequent operations.

Although l i m i t e d t o one v a r i a b l e and lacking d i f f e r e n t i a t i o n o r
integration, the l e s s straightforward interpolation technique together
with the array overlays and the self-contained error analysis make the
logic s ignif icant ly more complicated than for the other PICOElATH prog-
rams. Subject t o t h i s warning, here is a brief outline and dictionary
of variables for the rat ional program:

How the Rational Program works February 10, 1981

Chtline of the Rational Program

Lines I Purpose
..................................
5-10 1 Declare double precision and integer variables, then skip

I around a subroutine and the prefatory remarks
--------+--
20-30 1 Subroutine assigning a rational expression in X to P,
------+---
40-180 1 Prefatory remarks

190 I Initialize some variables
-------$--

200-220 1 Automatically determine implementation-dependent accuracy
I tolerances and corresponding appropriate dimensions

230 I Display first line of answer announcement
-------+---
240-360 1 Derive up to Id-1 successive inverted differences and their

I error estimates until 3 successive candidates are negligible
I or would lead to unacceptable accuracy

-------+--
37 0 I Display rest of answer announcement

380-510 1 Derive coefficients of numerator and denominator from the
I sample abscissas and the inverted differences
,

520-570 1 Display the numerator, a horizontal bar, then the denominator
-------+---
580-680 1 Deternine largest discrepancy and ordinate magnitude~ for

I abscissas midway between trial interpolation abscissas
-- - - -

1 - --

690-720 1 Display a warning if the discrepancy is not small relative to
I the largest ordinate magnitude

730-760 1 Display a message explaining how to proceed to next example
--------$--

770 I Stop
-------+---
780-10401 Subroutine for smoothing then displaying a polynomial, with

I line 790 as a secondary entry point
-------+---
1050 I End
-------+--

How the Rational Program Works February 10, 1981

D i c t i o n a r y of Variables in the Rational Program

Blames I purpose
--------+-- --------- ...
A I Ordinate sample

I

array A I Ordinate, inverted differences & abscissas; coefficients
--------+---
C I Maximm discrepancy
--------+--
D I Implementation accuracy of "^"
-------+--
array E I Estimated bounds on absolute errors in array A
--------+--
F I Maximurn coefficient magnitude
--------+--
G,I,J,K l Dunorp(subscripts

H I A(H) = coefficient of Highest degree term
-------+--

L l A(L) = coefficient of Lowest degree term

M I Index so that final inverted difference has least error
---------+---
N I Maximum # of terms, including numerator & denominator
--------+--
0 I Output flag: I-Ias a term already been displayed?
--------+---

R,U,W,Y l Ivlulti-purpose temporaries

S I Signed abscissa increment
--------+---
T 1 2.0/3.0, to machine accuracy

I

X l Perturbed abscissa or a temporary
---------+--
Z I Nominal abscissa

Adaptation: Precision February 10, 1981

7 . l 3 w m u m I m AM) lulwRmoN GUIDE

Section 8 contains the PICOPIATI-I program l i s t ings , written in BASIC.
The s p e c i f i c d i a l e c t of BASIC is ANSI MINIMAL BASIC enhanced by a few
widely used extensions tha t great ly increase readability, compactness or
accuracy. This s e c t i o n 7 expla ins how t o adapt those genera l ized
l i s t i n g s t o s p e c i f i c implementations of BASIC. Given a moderate
fami l iar i ty with BASIC, the explanation should a lso enable t ranslat ion
of the programs t o another programming language with which the reader is
proficient.

The programs make no use of s o p h i s t i c a t e d s t r i n g opera t ions ,
matrices, or other advanced fea tures . Only singly-subscr ip ted a r rays
t h e common f loa t ing-point a r i t h m e t i c opera t ions , and t h e a b i l i t y t o
display l i t e r a l s t r ing constants a re required.

7.1 Precision

The f i r s t l i n e of a l l four programs dec la res t h a t v a r i a b l e names
beginning wi th c e r t a i n l e t t e r s a r e double precision, whereas variable
names beginning wi th c e r t a i n o the r l e t t e r s a r e integer . Double
p rec i s ion inc reases t h e a l lowable problem s ize beyond which accuracy
becomes intolerable, whereas using integer variables for subscripts and
f l a g s saves space and inc reases speed s l i g h t l y . However, t h e program
does not r equ i re double p rec i s ion o r in teger va r i ab les , s o d e l e t e t h e
double precision or integer declarations i f the implementation does not
support them. Moreover, many BASIC implementations tha t offer double
p rec i s ion do so f o r the opera to r s "+", "-'l, "*It , and It/", b u t not f o r
t h e opera tor "^", or f o r t h e b u i l t - i n t r i g funct ions , o r f o r user-
defined funct ions. On such implementations double p rec i s ion usual ly
yields only modest improvement over single precision i n instances where
program l i n e 20 o r any o the r l i n e employs any of t h e s i n g l e p rec i s ion
operations or functions.

In c o n t r a s t t o such d e c l a r a t i o n s o r something l i k e them, some
implementations provide a command (named perhaps SIZES) tha t establishes
the precisions of a l l floating-point and of a l l integer variables. I f
so, t r y the greatest allowable precision for floating p i n t , decreasing
it only i f t h i s y i e l d s i n s u f f i c i e n t space o r unacceptable computing
time. 011 the other hand, magnitudes of integer variables never exceed
99, s o 2 decimal d i g i t s or 1 byte is s u f f i c i e n t f o r then. Note t h a t
single precision is always adequate for variables not mentioned i n the
dec la ra t ions , b u t g r e a t e r p rec i s ion merely inc reases s to rage and
execution time slightly.

Rather than dec la ra t ions , some implementations requ i re a s u f f i x
such a s # on a l l double p rec i s ion va r i ab les , and/or a s u f f i x such a s %
on a l l integer variables. I f so, delete the declarations and modify the
corresponding variable names throughout the programs. It a lso may be
necessary t o identify integer or double precision constants or functions
by some such technique i n program l i n e 20 and throughout the program i n
order t o avoid degradation of some intermediate resul ts t o single preci-
sion.

Adaptation: Assignments February 10, 1981

Some versions of BASIC require each assignment statement t o begin
w i t h the word LET. If necessary modify a l l assignments accordingly. In
c o n t r a s t , some implementations permi t m u l t i p l e assignments using a
construct such a s

variablel = variable2 = . . . = variablen = expression
or

variablel, variable2, . . . , variablen = expression.

If so, there are several obvious opportunities t o exploit t h i s feature.

7.3 Printed Messages and Remarks

Although most t e rmina l s t h a t d i s p l a y only upper case w i l l
automatically convert t o upper case for display, some implementations do
not permi t lower-case l e t t e r s i n p r i n t e d messages o r remarks. If
necessary, use upper-case l e t t e r s only, Also, r e a d a b i l i t y and
convenience is aided by breaking p r i n t e d messages s o t h a t they f i t
within the width and height of the smallest terminal display area tha t
is customarily used. Similarly, readabili ty of the program is aided by
breaking l ines within the width of tha t terminal. Moreover, t o prevent
re levant output f ronr s c r o l l i n g off t h e screen prematurely, it may be
advisable i n some places t o use a PRINT and INPUT statement requesting
the user t o enter anything in order t o continue,

Some W I G implementation use a comma or something e l s e other than
a semicolon t o suppress tabs followed by a new l ine i n PRINT statements,
If necessary, make appropriate changes,

BASIC implementations t h a t do not provide f o r d isp laying an
a r b i t r a r y INPUT prompt s t r i n g requ i re t h e INPUT s ta tements i n t h e
programs t o be subdivided i n t o a PRINT s ta tement then an INPUT
statement

Some versions of W I C have a single-character r a w input statement
(named perhaps GET) t h a t avoids t h e necess i ty of press ing an ENTER o r
RETURN key a f t e r typing an E, D, o r I i n response t o t h e program query,
thus improving interact ivi ty,

Some versions of BASIC permit the LIST command within a program,
e n a b l i ~ g the program t o automatically list l i n e 20 for the user before
or a f t e r displaying the expanded result .

The three question marks in the remark on l i n e 80 of each program
should be replaced by a phrase iden t i fy ing t h e computer and language
dialect, so tha t anyone copying your implementation w i l l real ize tha t it
is not necessarily in the original form and tha t it may require modifications
for other computers or language dialects. For example, an appropriate
phrase would be "Applesof t DASIC".

Maptation: Assignments February 10, 1981

7.4 Array Dimensions and Subscripts

a. Many implementations do not permit ad justable dimensions such as
DIM A(PJ+N+l), E(N) . I f necessary, temporar i ly i n s e r t a "PRINT N"
s ta tement immediately before DIM s t a t ements t o determine t h e
appropr ia te cons tant t o use f o r N, then use t h a t value i n t h e DIM
s ta tements , preceeded by a remark such a s "REM The dimension of
array A must be a t l e a s t WN+l and the dimension of array E must be
a t l eas t V, i n order t o forewarn anyone who attempts t o t r a n s p r t
your implementation t o a d i f f e r e n t computing environment wi thout
benefit of t h i s manual,

b. Some implementations do not permit a D I M s t a t ement -- perhaps
because only one prenamed array, singly-subscripted, is allowed. If
necesssary, delete the DIM statements. Moreover, i f only one array
is allowed, change a l l a r r a y references t o t h e name of the one
array, while increasing the subscripts of former references t o other
arrays by appropriate amounts so as t o pack the arrays end-to-end i n
the one array. For example, i n the rat ional program, change E(K)
t o A(K+?StN+l) in program l i n e 220.

c. Rather than parentheses, some implementatiori use square brackets " g "
and "I" or some o the r d e l i m i t e r s t o d e l i m i t subscr ip ts . I f
necessary modify a l l array references accordingly.

d. Some implementations requ i re a s e p a r a t e DIM s ta tement f o r each
array. I f necessary, modify the program accordingly.

e, Some implementations do not permi t use of a name a s both an a r r a y
and a sca lar . I f necessary, change s c a l a r A t o some other name
throughout the programs t o avoid conf l ic t with array A.

Some implementations use "**l1 or something e l se other than "^" t o
ind ica te r a i s i n g t o a power. I f necessary modify t h e programs
accordingly. Most PASCAL and "C" language implementations do not pro-
vide an exponentiat ion operator. I n such cases one should de f ine an
exponentiation function for use in program l i n e 20.

Some implementations a r e unable t o r a i s e negat ive numbers t o a
power even though t h e power is integer . For such implementations, be
s u r e t o d i s p l a y a message warning t h e u s e r t o u s e r e p e a t e d
multiplication rather than exponentiation, or t o use a specially-written
exponentiat ion funct ion defined i n each program t o overcome t h i s
limitation.

7.6 Multiple-statement Lines

a. Some implementations use a separa to r d i f f e r e n t than ":" between
mul t ip le s ta tements on a l ine . I f necessary modify t h e program
accordingly.

PICONATH-00 Adaptation: Exponentiation February 10, 1981

b. Some implementations do not permit multiple statements per line. If
necessary enter the statements one per line, with appropriately
interpolated line numbers. For a multiple-statement line of the form

IF condition THEN statementl: statement2: ,..: statementn
the corresponding equivalent to use is

IF EIOT(condition) THEP1 line
statementl
statement2 ...
statement,

line ...
Beware that some versions of BASIC, such as Northstar, permit
multiple. statements per line but treat them differently following
THEN. Such IF statements on such implementztions must be rearranged
as illustrated above.

c, Some implementations permit only a line number as the THEP;! clause of
an IF statement. However, a statement of the form

IF condition THEN statement

c m always be transformed to the equivalent form

IF condition THEN linel
GOTO line2

linel statement
line2 - - -

7 -7 Relational Operators

a. Some implementations represent the "not equals" relational operator
II,,II by II><II, II#II, II,=II Or II~EII. Also, some implementations
represent the "less than or equals" operator "<=" by "=<" or "LE",
while some implementations represent the "greater than or equals"
operator ">=" by "=>" or "GE", If any of these situations prevail,
make appropriate substitutions throughout the programs.

b. Some implementations do not provide a full set of relational
operators. However, programs can always be rearranged so that the
only necessary relational operator is one of the set (<, >, <=, >=l.
For example, the form

can be rewritten as

PICOENTH- 80 Adaptation: Relational Operators February 10, 1981

IF ex ressioni > expression2 THEN line2
G C ~ ~ O P inel

If necessary, nodify the progrzm accordingly.

7.8 Logical Operators

a. Some implementations require use of another symbol such as "+", " l ",
or "V" for the logical operator named "OR" in the program.
Similarly, , some implementations require use of another symbol such
as 11*11 11&11 , or Iffl' for the logical operator named "AND", while some
implementations require use of another symbol such as "-", "q", or
l1 - II for the logical operator named "NOT". If any of these
situations prevail, make appropriate substitutions throughout the
programs.

b. Some implementations do not support one or more of the logical
operators named "ANY', "OR", or "ZKYT". However, a line of the form

IF conditionl OR condition2 THEN statement

can be replaced by the equivalent pair

IF conditionl statement
IF condition2 THEM statement

Similarly, a line of the form

IF condition1 AND condit ion2 'I'Fim st~~ement

can be replaced by the equivalent construct

IF conditionl THEN line1
GOTO line,

linel IF condition2 statement
line2

Moreover, a line of the form

IF t;WT(condition) THEN statement

can be replaced by the equivalent construct

IF conditiorl THEN line
statement

line . ..

Adaptation: Built-in Functions February 10, 1981

7.9 Built-in Functions

Beware that in BASIC function INT(u) is defined as the largest
integer that does not exceed U. In many other languages and in a few
implementations of BASIC, this is called FLOOR(u), with INT(u) or FIX(u)
or TRUNC(u) being reserved for integer truncation, which is different
for negative arguments. (Truncation always rounds toward zero.) If an
appropriate FLOOR-type INT is not available, then instances of INT in
the programs can be simulated as follows:

1. Isolate each usage of INT as an assignment of the form

2. Peplace each such assignment by the pair of statements

y = TRUNC(x)
IF x<O AND y<>x THEN y=y-l

Some implementations do not provide a built-in SGN function, which
is used in the rational program. However, the argument is never zero
there, permitting SGN(Z) to be safely defined there as ABS(Z)/Z.

As in most BASIC implementations, LXX; denotes the natural logarithm
and SQR denotes the square root. These may be named differently in some
implementat ions.

Most BASIC implementations do not provide built-in secant, cosecant
and cotangent functions, and most BASIC implementations limit user-
defined functions to one letter follot~ing "FM". Consequently, the
corresponding definitions in the trigonometric program may have to be
changed to names such as FME for SEC, FNS for cSc and FM3 for at.

The MOD operator in the Fourier program is named E M for REMainder
in some implementations. Alternatively, MOD or NE4 is often provided as
a function rather than an operator. If no such facility is available,
an appropriate function PJIOD(u,v) can be defined for this program where U
and v are nonnegative as U - INT(u/v), with INT being either a FLOOR or
TRUNC variant, as described at the beginning of this subsection.

7.10 String Variables and Cmparisons

All but the rational program make trivial use of a string variable
named AS to capture the users choice between Expansion, Differentiation,
and Integration. Some BASIC implementations do not support string
variables or do not permit equality comparisons for them. In such
cases, a trick that often works is to initialize the numeric variables
E, D, and I to values such as 0, 1, and -1 respectively. Then k~hen the
user types one of these letters he is actually providing its numerical
value, which can be captured with another numeric variable then tested.

PICOInATN-88 Adaptation: String Variables February 10, 1981

(Naturally, i n instances where E, D or I a re already employed for other
purposes, it is necessary t o rename variables in order t o f ree E, D and
I f o r t h i s purpose.) I f t h i s technique doesn8t work, it is always
poss ib le t o ask t h e user t o d i r e c t l y e n t e r -1, 0 or 1 f o r in tegra t ion ,
expansion and different iat ion respectively.

Three of t h e programs make use of a s t r i n g v a r i a b l e named B$ t o
hold a l l or par t of the cofactor to be displayed with each coefficient.
However, i f necessary t h e same e f f e c t can be accomplished somewhat
awkwardly using only s t r ing constants by displaying t h i s portion of the
cofactor a f t e r returning from the coefficient display subroutine,

Some implementations use s i n g l e r a t h e r than double quotes t o
d e l i m i t s t r i n g cons tants , n e c e s s i t a t i n g corresponding changes i n t h e
programs.

Some implementations require s t r ing delimiters around input s t r ings
even though they a r e an e n t i r e l ine . I f so , t h e prompt message f o r
choosing between Expansion, Integration or Differentiation should a lso
include the delimiters.

Some implementations implement s t r i n g s a s a r r a y s of s i n g l e
characters, necessitating corresponding minor changes t o the programs.

7.11 Space Requirements

For many microcomputer BASIC implementations tha t permit multiple
statements per l ine, the Fourier, rational, polynomial and trigonometric
programs requ i re about 3400, 3800, 4100 and 5200 by tes of s to rage
respect ive ly , including f u l l PRINT messages, remarks, indentation and
spacing. Various implementations requ i re somewhat more o r l e s s than
these values. Thus some space-saving- modifications may be necessary for
one or more of the programs on programmable calculators or on the very
t i n i e s t computers, These modif icat ions reduce the readability, auto-
tu to r i a l level, or robustness of the program, so f i r s t t r y an unabridged
adapta t ion t o determine how l i t t l e , i f any, needs t o be sac r i f i ced .
(Many BASIC implementations provide a command named something such a s
FREE, tIEF1ORY or PGMSIZE tha t helps determine space availabili ty,) Ee
may be judged by your adapta t ion of our software, s o w e ask your co-
operation i n changing the program a s l i t t l e a s possible, employing each
of t h e fol lowing techniques only a f t e r t h e preceeding ones have been
f u l l y exploited, yet %ore savings a re needed.

a. For implementations having a built-in MAX function tha t returns the
larger of its two arguments, there a re many statements of the form

IF expression1 > variable1 THEN variablel = expressionl

tha t can be converted t o the more compact equivalent:

b. Some BASICS don8t require an END statement, saving a l i t t le space.

PIC@:IAm-80 Adaptation: Space Requirements February 10, 1981

c. If the implementation is more nearly a pure i n t e r p r e t e r than a pure
compiler, then renumbering the l ines from l with an increment of l
may save space. However, t h i s makes l a t e r insertions more awkward.
Consequently, i f your implementat ion does not provide m automatic
renumbering fac i l i ty , then experiment f i r s t using a small segment of
the program t o determine i f there are any such space savings before
going t o the trouble and hazard of changing our l ine numbers.

d. I f the implementation is more nearly a pure interpreter than a pure
compiler, var ious s y n t a c t i c abbrevia t ions may save space i n t h e
loaded program. For example, t h e fol lowing t a b l e i n d i c a t e s some
commonly allowed BASIC abbreviations:

Construct I Abbreviation
---------------$-------------------------- -------------
'l.7~~ I ",'l or " " or "T"
--------------+-------------------------
PRIm I "?W or " 1 'l or "p"

NEXT variable I "NEXT" or 'INn
-------------+-----------------v--------

Similarly, reduction of the indentation amounts may save space for
some i n t e r p r e t e r S. Also, w e have not exploi ted t h e oppor tun i t i e s
f o r mul t ip le s ta tements per l i n e where t o do s o would obscure t h e
program structure, and many BASIC o r F O m "] implementations even
permi t a l l spaces t o be omit ted, y ie ld ing an inc red ib ly ugly
program. (Please don't do t h i s unless absolutely necessary.)

e. It is relat ively straightforward t o d e l e t e t h e i n t e g r a t i o n and/or
d i f f e r e n t i a t i o n f a c i l i t i e s from any of t h e t h r e e programs t h a t
provide it. For pre-calculus students these f a c i l i t i e s a re merely a
d i s t r a c t i o n anyway, which teachers may wish t o d i s a b l e wi th a
removable GOTQ bypassing t h e query, accompanied by a remark
explaining how t o restore the program t o f u l l power.

f . The remarks =and printed messages can be abbreviated s l igh t ly without
becoming too terse for comprehension, and the displayed instructions
a re more appropriate a s comments i n batch-or iented implementations
t h a t do not accept input from a terminal. However, we abso lu te ly
i n s i s t t h a t a t l e a s t The S o f t Warehouse name, address, copyr ight
notice, and conditional duplication permission be included i n each
program.

g. A t t h e expense of forc ing use r s t o remember various d i f f e r e n t
oddball l i n e numbers in place of "line 20n, the i n i t i a l GOTO can be
de le ted i f the subroutine beginning a t l i n e 20 is moved t o j u s t
before the end of the programs.

Ada.ptation: Other Iznguages February 10, 1981

After becoming famil iar with the programs i n the i r or iginal form,
experienced programmers with computers having suff ic ient memory may wish
t o merge the polynomial program with the rat ional program and merge the
t r igonometr ic program wi th t h e Four ier program, o r even t o merge a l l
four programs i n t o one, The most s t r a igh t fo rward technique is t o add
say 2000 t o a l l of t h e l i n e numbers of the second program, etc . then
e s s e n t i a l l y append t h e programs end t o end, wi th a few obvious
d e l e t i o n s such a s i n t e r n a l ENJl s tatements . One can then choose t h e
second program for example by entering RUN 2010 rather than merely RUM.
Bet te r ye t , t h e s e l e c t i o n can be menu driven. However, t h e r e a r e ob-
vious oppor tun i t i e s t o share por t ions of t h e programs, perhaps a t t h e
expense of renaming some variables. More ambitiously, one can arrange
s o t h a t t h e program uses a s i n g l e RUN command bu t t r i e s f i t t i n g t h e
formula on l i n e 20 with successive candidates u n t i l one category resul ts
i n a s u f f i c i e n t l y smal l discrepancy. However, t h e s e a r e not minor
adapta t ions , and f u l l e x p l o i t a t i o n of the oppor tun i t i e s f o r shar ing
sections of code requires an understanding of section 6. Consequently,
w e strongly recommend against these adaptations un t i l a f t e r the indivi-
dual programs a r e success fu l ly i n s t a l l e d and much spare t ime is
available.

7.12 Other Ianguages

PICONATH can be adapted t o most computer programming languages.
However, t h e programs a r e most p leasan t t o use i n an environment t h a t
pe rmi t s a program t o be modified then rerun i n less than 1 minute of
elapsed time. For most computing environments t h i s suggests languages
such a s APL, BASIC, FORTH, LISP or muSIMP rather than languages such a s
C, FORTRAN, PASCAL o r PL/I. A user of PICOMATH should be r e l a t i v e l y
indifferent t o the choice of implementation language except insofar a s
it a f f e c t s i n t e r a c t i v i t y and precision. 'Phcs, s i n c e PICOFlATH is used
many t imes once implemented, it is appropr ia te t o s e l e c t from t h e
available implementation languages on the basis of the user's needs more
than the implementor's comfort of f amiliaritsy,

Some language implementations o f f e r an EXECute s ta tement o r i ts
equivalent , which pe rmi t s a cha rac te r - s t r ing t o be executed a s i f it
were a program statement. This f a c i l i t y can be used t o make PICOMATM
more i n t e r a c t i v e a s fol lows: Rather than having t h e expression t o be
simplified be on program l ine 20, a character s t r ing of the form

"A = expression"

is input i n t e r a c t i v e l y from t h e t e rmina l a s t h e value of a s t r i n g
v a r i a b l e named perhaps CS. Then, each ins tance of "GOSUB 20" is
replaced by "EXEC CS" t o g ive the same e f f e c t without requi r ing any
program modification by the user. This enables the STOP statement t o be
replaced with a GOIO statement causing the program t o repeatedly loop
back t o the beginning for addit ional inpu t examples u n t i l i n t e r r u p t e d
manually by s t r i k i n g t h e appropr ia te break key on t h e terminal . This
f u r t h e r pe rmi t s t h e use of abbreviated prompt s t r i n g s a f t e r every
interaction cycle tha t does not produce s e r i o ~ s discrepancy.

PIC@,lATH-8 0 Testing February 10, 1981

Other languages and some BASIC implementations provide an e r r o r
t r ap f a c i l i t y named perhaps ON E E D R or EPmRSET t h a t permits graceful
recovery from overflow, underflow and zerodivide. If such a f a c i l i t y is
present, perhaps it can be used t o proceed from the point of d i f f i cu l ty
using t h e most reasonable value, a f t e r p r i n t i n g a more s p e c i f i c a l l y
helpful message than would otherwise occur.

7.13 Testing

Besides t h e examples i n t h i s manual, good t e s t cases a r e t h e
f ollcwing :

2 2 3 2 Polynomial: x6, x5; x4, x3y, X y , xy3, y4; X , X y, xy2, y3; x2, 2 xy, xz, y2, yz, z ; X, y, z , 1, 0, -1.

Rational: xmr x m-1, ..., X, 1, 0, -1, X-l, x - ~ , ..., x - ~ ; where
m and n are the exponent limits displayed in the epilogue message.

Fourier: -1, 0, 1, cos X, s i n X, cos(2x), s in (2x) , cos(3x), ...,
cos (nx) , sin(nx1; where n is t h e m u l t i p l i c i t y l i m i t d isplayed i n t h e
epilogue message.

2 Trigonometric: -1, 0, 1, t a n (X) *sec (X) , c o t (X) *csc (X) , s e c X,

c o t X , t a n X , sec X, csc X, s i n y, cosy, cosx, cos(x)*s in(y) ,
cos (X) *COS (y) , s i n X, s in (x) *s in (y) , s in (x) *cos (y) , s in (x) *cos (X) ,
sinax.

PICOIiWTH-S0 February 10, 1981

8.1 Rational Program

10 GOTO 190
20 A=(2*X-(3*X+4)/(X-2))/(X-(lO"XS4)/(2*X+3))
30 m m ' ~
40 PEM PATIONAL program of the PICOtIATH-80 demonstration synibolic
50 REEI math package. Cornright (c) 5/20/80 and trademark by
60 REP: The Soft Warehouse, Box 11174, Honolulu, Hawaii 96828.
70 W*!
80 m Adapted with pem,ission for ??? language dialect.
90 m; Permission to install PICOT4ATEI-80 or a translation of it on
100 REM additional machines is hereby granted for a royalty of $2
110 E31 each, payable to The Soft FJarehouse, provided the remarks and
120 RE11 printed messages are all included, modified only as necessary.
130 RE24 The reference manual contains more usage information, the latest
140 REM unabridged program listings, an adaptation guide, and an expla~lation
150 RE31 of how PICOEilATH works. This manual and machine-readable versions
160 PSM customized for mny popular mchines are available at modest cost
170 F3FsR, from some hardware manufacturers, most computer stores, cad
180 P8M Programma International at 2908 K bbomi St., Burbank, CA 91504.
190 Z=LOG(2) : X=Z: T=2.0/3.0: u=T^~: N=O: K=O: D=l: S=l: 14=1
200 N=N+l: D=D/13: IF U<> (D+T) ̂3 THm 200
210 DIM A(IJ+N+l), E(M) : ~(1)=0
220 D=9*D/8 : IF U= (D+T) "3 THEN 220
230 PRINT "Expanded on a comon denominator, reduced to lowest terms,"
240 K=K+l: IF K>N THE24 370
250 J=3
260 J=J-1: IF J<O THE3J 370
270 X=Z: GO^^ 20: B A
280 X=Z*(l+D) : GOSUE 20: FJ=PBS(A-R)
290 X=Z* (1-D) : GOSUB 20 : Y=IBS (A-R) : IF Y>W
300 Y=Z: Z=Z-S: S=-S-SGlI(S): I=l: 0 350
310 %R-A(1): U=ABS(R): F+FStE(I)+U*D: IF 9%7>=U THJ2N 260
320 X=Y-A(N+I) : R=X/R: T=mS (R) : W= (M S (X) /U) *D+IfJ"r/U
330 IF 9qJ>=T THEN 260
340 I=I+1
350 IF I<K THEM 310
360 &K: A(K)=R: A(K+N)=Y: E(K)=Li: GOTO 240
370 PRINT " the formula on line 20 is approximately A ="
380 PRINT: A(Wb4)=1: I=M: K=M-l: GOTQ 510
390 I=I-l: A(N+I) = A(K) *A(I+l) - ~ (1 8 ~) *A(N+I+~)
400 IF I=M-1 THEN 440
410 FOR J=I+l TO N-l
420 A(N+J) =A(l J+J) + A(K)*A(J+l) -A(N+K)*A(IV+J+l)
430 BEXI' J
440 IF K = l THEN 540
450 A(1) = A(K-1) *A(WI) - A(hZtK-1) *A(I+1)
460 IF I=rq-x mm 500
470 FQR J=I+l TO M-l
480 A(J) = A(J) + A(K-~)*A(BNJ) - A(FJ+K-l)*A(J+l)
490 NEXT J
500 A(M) =A(M) +A(K-1) : K=K-2
510 IF R>O THEN 390
520 G-I: H=M: GOSUB 780

PICOEtlATH-8 0 Rational Program Listing February 10, 1981

530 L,=N+I: H=PStM: GOTO 560
540 L=PWI: H=PHP2: C-OSUB 780
550 L=I+l: H=M
560 PRINT * ~ - ~ ~
570 GOSUB 790
580 C=O: R=O: s=sGrj(z): X=Z-s/2: PRINT
590 FOR 1=1 TO F1
600 FJ=0 : Z=0: C W 20: IF r;BS (A) >R THEN %=S (A)
610 FOR @E; TO J STEP -1
6 20 l+FPX+A (G)
630 NEXT G
640 EQRGHTO L STEP-1
650 Z=Z*X+A(G)
660 PWT G
67 0 X=X-S : FJ=PBS (A-V?/ Z) : IF FJ>C THEN C=W
680 NEXT I
690 IF 9*C<=SQR(SQR(D) *R THEM 730
700 PRINT "sampling suggests significant discrepancy. Perhaps line 20"
710 PRINT " is irrational, of excessive deqree, or too sensitive to"
720 PRIPZP " limitations of this BASIC arithnetic,"
730 PRINT "For comparison, list line 20. If desired, alter it to assignn
740 PRIhT " A any expression that sinplifies to a polynomial in X of"
750 PRINT " degree <=";IfaT(N/2);"divided by a polynomial in X of degree C=";
760 PRINT h - 1 2 ; Then rerun but do PXrr save altered program, "
770 STOP
780 J=L: K=H
790 F=O: 0 4
800 FOR G L TO E!
810 Y=ABS (A(G) : IF Y>F THEi31 F=Y
820 bJEXT G
830 FOR G L TO H
840 C=INT(A(G)+.5) : X=AES(A(G) -C) : IF X<.01 AMD 99*X<F 'TEE31 A(G) =C
850 NEXT G
860 IF H=L THE31 1000
870 FOR G H TO L+1 STEP -1
880 R=A(G) : IF R=O THEN 990
890 IF 0=0 TWEJSI 930
900 IF R=-1 mm3 PRINT n-8*;
910 IF ARS(R) =l THE3 960
920 GOTO 950
930 IF R<O THEN PRINT " - ";: R=-R: GOnr 950
940 PRINT " + ";
950 IF R<>1 THEN PRINT R;
960 PRINT 'l X ";
970 IF G>L+1 'THEN PRIPZCwA"; G-L;
980 OEO
990 PU'EXT G
1000 IF C)=l TEE31 PRIPJT A(L): RETURN
1010 IF A(L)>O THE31 PRINT " 9 "; A(L)
1020 IF A(L) <O THE3 PRIfJT " - "; -A(L)
1030 IF A(L)=O THE31 PRINT
1040 RETURP'!
1050 END

February 10, 1981

7.2 P o l y - a 1 Program

10 GOTO 190
20 A = (X+1Ie6 + (X+Y+1)"4 + (X+Y+Z+l)*(X+Y+Z-1)
30 PSTUN.4
40 Pm.1 POLYI\Df.1IAL program of the PIcONATH-80 demonstration symbolic
50 Pm1 math package. Copyright (c) 5/20/80 and trademark by
60 RE14 The Soft Warehouse, Box 11174, Honolulu, Hawaii 96828.
70 FEPI
80 FEPI Adapted with permission for ??? language dialect.
90 m 4 Permission to install PICOMATK-80 or a translation of it on
100 P534 additional machines is hereby granted for a royalty of $2
110 W1 each, payable to The Softb?arehouse, provided the remarks and
120 REEl printed messages are all included, modified only as necessary.
130 REEI The reference manual contains more usage information, the latest
l40 F332 unabridged program listings, an adapatation guide, and an explanation
150 RE31 of how PICC2,WH works. This manual and machine-readable versions
160 PSM customized for man17 popular machines are available at modest cost
170 M from some hardware manufacturers, most computer stores, and
180 P m Programna International, 2908 N. hlaomi St., Burbank, CA 91504.
190 DIM A (26) : 0=1: 13=0 : Y=O : Z=0
200 PRINT "Enter E for Expsion, D for Derivative with respect to X,"
210 INPUT; " or I for Integral with respect to X:", A$: PRINT
220 IF A$="En THEN PRINT "Approximately, A = ";: W?D 260
230 IF A$="DW THJ3; PRINT "Approximately, dPJdX = ";: GOTO 260
240 IF A$<>"I" THEN 200
250 PRINT "Approximately, S A dX = ";
260 X=3: WUE 20: %A
270 X=-3: GOSUB 20: C=B-A: B=E+A
280 X=2: GOSUE 20: D=A
290 X=-2: GOSUB 20: B A
300 X=l: GOSUB 20: F=A
310 X=-l: GOSUB 20: GZA
320 X=O: GOSUB 20: H=A
330 V=6: B$="": A=(((W6-D-E)/C;+(F-K;)/2)/2-H/3)/12: GOSUB 820
340 V=5: A=((C/~+E-D)/~+(F-G)/~)/~~: GOSUB 820
350 V=4: A=((M-E- (B/3+13* (Fe) /4) /2+H/3*7) /6: GO.SUE 820
360 Y=2: GOSUB 20: I=A
370 Y=-2: GOSUE 20: J=A
380 Y=l: GOSUB 20: K=A
390 Y=-l: GOSUE: 20: LPA
400 X=-2: GOSUB 20: M=A
410 X=l : GOSUE 20: P=A
420 Y=l: GOSUB 20: QA
430 X=-l: GO§UB 20: R=A
440 Y=-2: GOSUE 20: S=A
450 Y=-l: GOSUB 20: T=A
460 V=3 : E$="Y" : A= ((F-E+P.I-P) /3+G-IE+L-T) /2 : GODUE 820
470 B$="" : A=((13* (G-F) -C) /8+D-E) /6: GOSUE 820
480 V=2: B$="Y^~": A=((P+(ZtR+T)/2-F-G-K-L)/2+H: GOSUB 820
490 B$="Y": A=((@P+R-T)/~+L-K)/~: GOSUE 820
500 B$="" : A= ((W9- (WE) /2*3) /5-H/9*49+3* (F-K;)) /4 : GOSUB 820
510 V=l : B$="Y"~" : A= ((K-J+S-R) /3+G-H+L-T) /2: GOSUE 820
520 0$="~^2" : A=((P-R+pT) /2+G-F) /2: G O a V 820

PIC0I.m-80 Polynomial prqrm listinc; February 10, 1981

530 B$="YW: A=((5*WQ)/2+(E-F+J-K-M-S-(PtR)/2)/3)/2-G+H-L: GOSUE, 820
540 E=E-D: Z=-1: Y=O: GOSUJ3 20: D=A
550 X=O: GOSUB 20: B A
560 B$="Z": A=D-B+H-G: GOSUB 820
570 B$="": ~=((3*E+C/3)/5+3*(F-G))/4: GOSUE 820
580 V=0: B$="Y^~": A=(((I+J)/4-K-L)/3+H/2)/2: GOSUE 820
590 B$="Y^~" : A= ((I-J) /2+L-K) /6: GOSUE 820
600 BS="yn2" : A= (2* (K+L) -(I+J) /8) /3-H/4*5: GOSUE 820
610 Z=1: GOSUB 20: C=A: Y=-l: GOSUB 20
620 B$="YZV: A=L-HK-A: GOSUE 820
630 B$="Y" : A= ((J-I) /4+2* (K-L) /3: GOSUB 820
640 B$="zn2": A= (C+B) /2-H: GOSUB 820
650 B$="Z": A=(C-B)/%: GOSUB 820
660 E$="": A=H: GOSUE 820
670 IF O=1 THEN PRINT A: GOTO 690
680 PRINT
690 F=O: G=02 X=ATN(l): Y=EXP(l)/S: Z=LOG(2) : GOSUB 1000
700 X=-X: G O D 1000: Y=-Y: GOSUE 1000: Z=-Z: GOSUB 1000
710 F=F*F: C=G*G+F: IF F=O THEN 770
720 IF (WF) ̂3=1 THEN 770
730 PRINT "Sampling suggests significant discrepancy, Perhaps line 20 is"
740 PRINT " not equivalent to a polynomial in X, Y and Z, or the polynomial"
750 PRINT is of excessive degree or the expression is too sensitive"
760 PRINT " to limitations of this W I C aritl-nnetic."
770 PRINT "For comparison, list line 20. If desired, alter it to assign to"
780 PRINT " A any expression equivalent to an expanded polynomial in X, Y"
790 PRINT and Z, The total degree of any expanded tern containing X, Y"
800 PRINT " and Z should not exceed 6, 4 and 2 respectively."
810 STOP
820 GOSUE 980: M=N+l: A(N)=A
830 WV: IF A$="E" TEIE31 870
840 IF A$="IW THEN W=V+l: A=A/F?: GOTO 860
850 A=V*A: WW-1
860 COSUEt 980
870 IF A=O THE21
880 IF 0=0 'r"liEN 910
890 IF A=-l THEN PRINT "-";: A=-A
900 GOTO 930
910 IF A<G THEPI PRIWT " - ";: A=-A: GOTO 930
920 PRINT " + ";
930 IF A<>1 OR W O AND B$="" THEN PRIhT A;
940 IF W>O THFN PRINT "X";
950 IF W>1 THEN PE1TJT "^";W;
960 PRINT B$;
970 c+o : R E ~ I
980 U=INT (A-k.5) : IF M S (U-A) < .O1 'THEN A=U
990 F?.ElTUFJJ
1000 GCISUE 20 : IF AES (A) >F THEN F=ABS (A)
1010 W=((A(14) *Y+A(9) *X+A(15) *Y+(A(G) *X+A(10) *X+A116) *Y+((A(4) *X+A(7) *X+A(ll)) *X
1020 ~?=(kJ+~(18) *Y+(((((~(1) *x+A(~) *x+A(~) *x+A(~) 1 *x+A(~) *~+~(13)) *X
1030 WABS (WA(21) + (A(12) *X+A(17) *Y+A(19) *Z+A(20)) *Z-A)
1040 IF W X THEN G=W
1050 RETURN
1060 EPD

February 10, 1901

7.3 Trigonometric Program

10 GOXI 190
20 A = SIN (X-Y+PI/2) + COS (2*X) - FNCOT (X) *FP(ISEC (X) /FIKSC (X)
30 FETURN
40 TRIGOlJW'!IC program of the PICOMATH-80 demonstration
50 REM qn-bolic math package. Copyright (c) 5/18/80 and trademark
60 FEPI by The Soft Fqarehouse, Box 11174, Honolulu, Hawaii 96828.
70 WM
80 P?EM Adapted with permission for ??? language dialect.
90 REM Permission to install PICOt~~-80 or a translation of it on
100 REIT additional mchines is hereby granted for a royalty of $2
l10 FE31 each, payable to The Softlqarehouse, provided the remarks and
120 Wi printed messages are all included, modified only as necessary.
130 RED1 The reference manual contains more usage information, the latest
140 REM unabridged program listings, an adaptation guide, and an explanation
150 RElil of how PICOMATH works. This manual and machine-readable versions
160 F324 customized for many popular mchines are available at modest cost
170 REt4 from some hardware manufacturers, most computer stores, and
180 FEN Programma International at 2908 N. Naomi St., Burbank, CA 91504.
190 DIE4 A(18) : F=ATK(l): PI=4*P: V=l: *l: F=0: Y=O
200 DEF FWSEC (X) =l/COS (X)
210 DEF FIGC(XI =~/sIN(x)
220 DEF FNCOT (X) =l/TAN(X)
230 PRINT wEnter E for Expand, D for Derivative with respect to X,"
240 INPUT;" or I for Integral with respect to X:", AS
250 IF A$<>"EV' MD A$<>"DW 2QJD A$<>"I1' THEN 230
260 PRINT: PRINT "Approximately, line 20 is equivalent to "
270 IF AS="EV1 THEN PRINT "A = " *
280 IF A$="DW THEN PRINT "dA/dXf= ";
290 IF A$="IW 213EN PRIWT "S A dX = ";
300 X=P: GOSUB 20: D=A
310 X=-X: GOSUB 20: E=D-A: D=D+A
320 Y=P: GOSUB 20: S=A
330 Y=-Y: GOSUB 20: Q=A
340 X=-X: GOSUB 20: T=S-A: +§+A
350 Y=-Y: GOSUE 20: R=Q-A: PQI-A
360 X=3*X: Y=Y+Y: GOSIJE3 20: PJ=A
370 X=-X: Y=-Y: GOSUE 20 : Z=W-A: C:f=V+YA
380 Y=O: GOSUE 20: K=A
390 X=-X: tXlSUI3 20 : J=K+A: K=A-K
400 x=2*PI/3: GOSUB 20: H=A
410 X=-X: GOSUB 20: 14-A: E=H+A
420 X=X/2: GOSOB 20: G=A
430 X=-X: GOSUE 20: F=G+A: G=A-G
440 X=YJ2: GOSUB 20: %A
450 X=-X: GOSUB 20: C=B-A: %HA
460 X=5*X: GOSUB 20:
470 X=-X: GOSUE 20: L,=I.I+A: l'.I=A-F?
480 X=SQR(2) : Y=SQR(3)/2: P=X-2+X
490 B$="TAN X SEC X": IF A$="I" THEPI B$="SEC X"
500 IF A$="D1' THEXI B$="(2 SEC? X - SEC X)"
510 A=~*((C+F~)/~-(E+K)*X+(G+I)*Y)/~~: 60rmE 1140
520 B$="Cm X CSC X": IF A$="DW THEN B$="(C% X - 2 CSC-~ X)"

PIC@,IATH-60 Trigonometric Prqram Listinc~ February 10, 1981

530 IF A$="In 211E2J B$="CSC X": V=-1
540 A=3*((F-H)/2+(J-D)*X+(B-L)*Y)/16: GOSUB 1140
550 B$="sEc^~ X": V=l: IF A$="In THEN B$="TAPJ X"
560 IF AS="Dt1 THm V=2: B$="TAN X SEC"^ X"
570 A=3*((B+F+H+L)/2-D-J)/8: GOSUE, 1140
580 ns=l1car xl1: IF A$=IIII* THEN BS=~~L,BI SIN xl*
590 IF A$="Dn THF31 B$="csc^~ X": V=-l
600 A= (Y* (GI+3* (C-N)) +3* (K-E) /8 : GOSUE 1140
610 B$="T!AN X": V=l: IF A$="DW THE21 B$="sEc^~ X"
620 IF A$="I" THEN W-1: B$="L;N CO's X"
630 A=(Y* (C-H+3* (G-I) +3* (K-E) /8: GOSUB 1140
640 BS="SEC X": V=l: IF A$="DV THEN B$="TAN X SEC X"
650 IF A$="IU THEN B$="U? TAN(X/2+PI/4lW
660 A=(9* (F-H)/2+3* (J-D) *X+(B-L) *Y)/16: GOSUE 1140
670 B$="CSC X": IF A$="IW THmJ B$="LN TAN(X/2Iw
680 IF A$="DW THl3N %-l: B$='*COT X CSC X"
690 A=(~*(C+FI)/~-~*(E+K)*X+(G+I)*Y)/~~: GOSUE 1140
700 E$="": IF A$="DW THE24 W 0
710 IF A$="I" THE22 B$="XW
720 A= (3* (WL) -F-H) /8+ (PJ+\J) /4+ (S-X*D) /P/2: GOSUE 1140
730 BS=~SIN Y": IF A$=T THEE BS="X SIN Y"
740 A= ((R-K+Z /2+ (E*X+T) /P) /2 : GOSUB 11 40
750 B$="COS Y": IF A$="I" THED B$="X COS Y"
760 A=((J-QWI /2+(D*X-S) /P) /2: GOSUE4 1140
770 B$="SIM X": V=l: IF A$="Em THE21 E$="COS X"
780 IF A$="Dn THEN V=-l
790 A=(3*(H-F)/2+(L-B)*Y)/2+(((3*X-6)*J+X*QI-(X-2)*(W-S))/2+(l-P)*D)/P
800 GOSUB 1140
810 B$="SIN X SIN Y": IF A$="E" THECJ B$="COS X SIN Y"
820 A=(K-Z) *X/4-(X* (R-T) +2* (E+T)) /P/2: GOSUB 1140
830 B$="SIN X COS Y": IF A$="En TWDJ BS="COS X COS Y"
840 A=(D-X*Q/2+(X-2) *(J+s-W)/~)/P: GOSUB 1140
850 ES$="SIW X": IF A$<>"EW THEN W-V: B$="CBS X"
860 A=X*K-E- (3* (C+D'i) /2+Y* (@I) /2- (WT) /P: GQ,S.JB 1140
870 B$="COS X SIN Y": IF A$="EW THEN RS="SIN X S113 Y"
880 A=(PS)/2: GOSUB 1140
890 BS="CQS X COS Y1l: IF A$="E1' THEN B$=IfSIN X COS Yft
900 A=(E+E+R+T)/P: GOSUE, 1140
910 B$="SIN X COS X": V=l: IF A$="DW THE8 B$=" (1 - 2 SIN^^ X) "
920 IF A$="In THEN V=1/2: E$="sIN^~ X"
930 A=2*(E-K)+Y*(I-G+!31-C) : GOSUE 1140
940 B$="sIN^~ X": IF A$="I" VIE23 E$="(X - SIN X COS X)"
950 IF A$="DN THEN V=2: B$="SIN X COS X"
960 A=2* (D+J) -(3* (B+) +F+E) /2: GOSUE 1140
970 IF Ocl 'l%E;TtJ PRINT A;
980 F=O: r-0: X=EXP(l): Y=LOG(2): GOdSJF3 1220
990 X=-l: GOSUE 1220
1000 Y=-1: GOSUB 1220
1010 X=l: GOasJB 1220
1020 F=F*F: H=G*G+F: PRINT: IF F=O THEN 1070
1030 IF G<.0001 OR A'l%J(H/F)=ATPj(l) THEN 1070
1040 PRINT "Sampling suggests significant discrepancy. Perhaps line 20"
1050 PRINT " is not equivalent to an allowable expression, or line 20"
1060 PRINT 'l is too sensitive to limitations of this BASIC arithmetic."
3070 PRIhT "For camparison, list line 20. If desired, alter it to assign"

p1cot:~m- 8 0 Trigonometric Prqrm Listing February 10, 1981

1080 PKSFIT 'I to A any expression equivalent to a linear conbination of the"
1090 PRINT " terms: TAEJ X SEC X, CCIT X G C X, s~C-2 X, COT X, TAN X,"
1100 PRINT " SEC X, CSC X, 1, SIN Y, COS Y, COS X, COS X SIN Yr"
1110 PRINT " COS X COS Y, SIN X, SIN X SIN Y, SIN X COS Y, SIN X COS X,"
1120 PRINT and ~ 1 ~ ~ 2 X. Then, reRm but do PXYT save altered program. "
1130 SrOP
1140 CXEUB 1200: 14=N+1: A(N)=A: A=AV: GOSUB 1200: IF A=O THEN RETURN
1150 IF 0=1 AND A>O Tf:IEN 1180
1160 IF A<O THEN PRINT " - ";: A=-A: GCrrO 1180
1170 PRINT + " ;
1180 IF A<>l OR B$="" THEN mZINT A;
1190 PRINT E$;: 0=0: RETURN
1200 U=IhT(A+.5) : IF P;BS(U-A) <.001 THm A=U
1210 m m J
1220 GOSUB 20 : IF ABS (A) >F THEN F=ABS (A)
1230 C=COS(X) : S=SIN(X) : 'FfAJ!Y1(X) : U=SIN(Y) : V=COS(Y)
1240 PJ=(A(l) *T+A(3)/C+A(6) /C+(A(2)/WA(7))/S+A(4) /T+A(5) *T+A(9) *U
1250 t+iiPJ+(A(14) +A(15) *~+~(16) *V+A(17) *C+A(18) *S) *S+A(lO) *V
1260 FI=ARS(WA(8) +(A(ll)+A(12) *U+A(13) W) *C-A)
1270 IF W X THEN G=W
1280 P-
1290 END

February 10, 1981

7.4 Fourier Progrm

10 GOTO 190
20 A= (COS (X) +SIN(X) "8
30 PETURN
40 REM FOURIER program of the PICOMATH-80 demonstration
50 R 3 1 W o l i c mth package. Copyright (C) 5/20/80 and trademark
60 I7ETjl by The Soft VJarehouse, Box 11174, Honolulu, Hawaii 96828.
70 WM
80 P3M Adapted with permission for ??? language dialect.
90 P ? I Permission to install PICOPWTI-80 or a translation of it on
100 PaM additional machines is hereby granted for a royalty of $2
110 P=? each, payable to The Soft Warehouse, provided the remarks and
120 PG34 printed messages are all included, modiified only as necessary.
130 REF1 The reference manual contains more usage information, the latest
140 P\EM unabridged program listings, an adaptation guide, and an explanation
150 of how PICDMATH works. This manual machine-readable versions
160 P334 customized for many popular machines are available at mcdest cost
170 PEEJI from some hardware manufacturers, most computer stores, m d
180 P m Programma International at 2908 N. Naomi St., Burbank, CA 91504.
190 F=AIPN(l) : PI=4*F: Q=l
200 Q=0/9: T=ATN(l+Q) : IF T<>F THEN 200 - -

210 E{=%: E3=EI+l1+1: ~Yl1 A(N) ,C (E) ,S(1;1) fU(M) ,V(M)
220 1hWT;"Enter E for Expand, D for Derivative or I for Integral:",A$
230 IF A$<>"EN AND A$<>"DW AND AS<>"IS' 220
240 Q=SQR(Q): P O : F=0: -0: S(1)=0: C(l)=l
250 W2*PI/N: S(2) =SIN(W) : C(2) =COS(W) : W=2*C (2) : PRIhT
260 FOR K=3 ?O EJ
270 C (K) =k?*C(K-l) -C (K-2) : S (K) =PPS (R-l) -S(IZ-2)
280 I!IEXT K
290 FOR K=I m ra
300 X=2*(K-l)*PI/M: GOSUE, 20: A(K)=A
310 F'IUA: X=MS (A) : IF X>F ~E~~ F=X
320 tmT K
330 FT/N: GOSUB 950: H=T
340 PRINT "V?hen the formula on line 20 is approximately transformed to a"
350 PRINT " linear trigonometric plynonial,"
360 IF A$="D" THEN PRINT " W d X = l';: GOTO 440
370 IF AS="IV' THEN PRINT "S A dX = "; : GOTO 400
380 PRINT "A = ";: IF P O THEN 440
390 @l: PRINT T; : GOTO 440
400 IF !PO WE3l 440
410 0=1: IF P-1 TRDJ Pl: PRINT 'I-";
420 IF T<>1 THEN PRINT T;
430 PRINT "X";
440 K=l
450 F 0
460 FOR J=1 TO N
470 T = T+A(J) * c(~+((K*J-K)P'IoD~I))
480 NEXT J
490 Tc2*T/N: B$="SIN(" : IF A$="EW THE31 S$="COS ("
500 GOSUB 950: U(K)=T: IF A$="DU THmJ T=-T
510 GOSUi3 820: T=O
520 FOR J=l TO N

PIC@YI~-60 Fourier Prqrm Listing February 10, 1981

530 T=T+A(J) * S(l+((K*J-K)EIODN))
540 NEXT J
550 T=Z*T/N: E$="COS (" : IF AS="E1' THEN B$="SIM("
560 GOSUB 950: V(K)=T: IF A$="I1' THEN P-T
570 GOSUB 820
580 R=K+l: IF K<=M THEN 450
590 IF 0=0 TWmI PRINT 0;
600 F=O : C-0 : X=EXP (1) : PRINT
610 FOR K=l TO 5
620 X=X/2: G O S 20: T=H
630 FOR J=l TO M
6 40 T = T + U(J)*COS(J*X) + V(J) *SIN(J*X)
650 NEXT J
660 Z=ABS (A) : IF Z>F mm F=Z
670 Z=ABS (A-T) : IF Z X THEPI G=Z
680 fWT K
690 IF G<=9*0*F 740
700 PRINT "~&lincj suggests significant discrepancy. Perhaps line 20 "
710 PRINT " is not equivalent to a trigonometric polynomial in X,"
720 PRINT " or it requires too large of a rmltiplicity, or it is"
730 PRINT " too sensitive to limitations of this PASIC arithmetic."
740 PRINT "For comparison, list line 20. If desired, alter it to tissign"
750 PRINT " A any expression equivalent to a polynomial in sines and"
760 PRINT " cosines of radian angles of the form n*X+C, where n is any"
770 PRINT " integer of magnitude <=" ; M; "and c is a constant, which may"
780 PRINT " involve the variable PI, representing the ratio of
790 PRIPJT " circumference to diameter of a circle. Then reRUP1 but do"
800 PRINT " IWT save altered program."
810 SrOP
820 IF A$="DV THDJ PT*K
830 IF A$="IW THEN PT/K
840 GOSUB 950
850 IF W O THE23 PSIURN
860 IF 0=0 THW 930
$70 IF T>O !Elm PRINT " + l';
880 IF T<O WEM 'P-T: PRINT " - l';
890 IF T<>1 THDJ PRINT T;
900 0.1: PRINT B$;
910 IF K>1 WI3J PRINT K;
920 PRINT "X) " ; : RETUPJI
930 IF T=-l THEN PRINT "-"; : Pl: 0 900
940 CXfI'O 890
950 Y=It;PT (T+ .5 : X=MS (T-Y : IF X<. 01 AND X<=Q*AES (T) TEEN P Y
960 IF AES (T) <Q*F THEE T=O
970 mm3
980 EPD

February 10, 1981

ACES?: 4-1
abbreviations: 2-10, 7-8
A L m : 4-3
basis functions: 6-1
bibliography: 4-1
cancellation: 2-2,
canonical: 2-9
cofactor: 6-5
command level: 2-3
common denominator: 2-1, 6-13
computer algebra: 4-1
continued fraction: 6-13
cosecant: 2-9
copyright: 3-1, 7-8, i
cotangent: 2-9
degree bounds: 2-2, 2-7
dictionary: 6-5, 6-8, 6-11, 6-16
differentiate: 1-2, 2-6
discrepancy: 2-2
discrete Fourier transform: 6-9
domain: 2-4
education: 5-1, 4-1
environment: 2-1, 7-9
evaluation: 2-3, 6-1
EXECute instruction: 7-9
examples: 2-5, 2-8, 2-10, 2-13
exponentiation: 2-1, 2-7, 7-3
Fast Fourier Transform: 6-9
Fourier program: 2-11, 1-1, 6-9, 8-8
FNCOrl:: 2-9
FEJCSC: 2-9
E : 2-9
FID: 2-9
FPIS: 2-9
FNSEC: 2-9
FORlt.3AC: 4-3
greatest comon divisor: 2-2
homogeneous: 6-12
Hildebrand: 6-12
INT function: 7-6
integer division: 2-5
integer variables: 7-1
integrate: 1-2, 2-6
integration constant: 2-6, 2-10
interactive: 4-2, 7-9
interplant : 6-1
interpolate: 2-3, 6-1
inverse: 6-3
inverted differences: 6-12
irrational: 2-5
linear: 6-9
linear corbination: 2-9
linearly independent: 2-9

Index February 10, 1981

literal string constant: 7-1
mm: 2-1
method of undetermined coefficients: 6-1
MOD: 7-6
mdulo: 6-9
monomial: 6-2
multiple angles: 1-1, 2-12
multiplication: 2-1
r~sIAmf.I: 4-3
negation : 2-7
normalization: 2-2, 6-12, 6-14
outline: 6-4, 6-7, 6-10, 6-15
overflow: 2-3
P: 2-10
P1: 2-10
perturbation: 6-14
PI: 2-9
pole: 6-6
polynomial division: 2-7
polynomial program: 2-6, 1-1, 6-1, 8-3
precedence: 2-7
precision: 2-2, 2-3, 7-1
professional society: 4-1
Programma International: 3-1
rational program: 2-1, 1-1, 8-8
rectified sine wave: 2-13
recurrence relations: 6-9, 6-13
REDUCE: 4-3
ref erences: 4-1
representable: 6-6
roundoff error: 2-2, 6-14
RUN: 2-1,
SAC-2: 4-3
secant: 2-9
%PI function: 7-6
SIGSN4: 4-1
singular: 6-12
smoothing: 6-3, 2-2
spectrum: 2-13
SQR function: 7-6
substitutions: 2-4, 2-7
systems: 4-2
The Soft Warehouse: 3-1, i
trig identities: 1-1, 2-9, 2-10, 2-12, 2-13
trig prqrm: 2-9, 1-1, 6-6, 8-5
truncation: 2-5, 7-6
underflow: 2-3
univariate : 6-2
zerodivide: 2-4
zeros: 6-2
#: 7-1
%: 7-1
A

: 2-1, 2-7, 7-3 -. . 2-7
*: 2-1

	0 PicoMath manual cover.pdf
	1 PicoMath 1st few pages.pdf
	2 PicoMath remaining pages.pdf

